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Chapter I   Literature survey 

 

I. 1 The gastrointestinal tract 

I.1.1 Anatomy and histology 

The human gastrointestinal (GI) tract consists of a 6-9 m long canal from mouth to 

anus, and the associated organs that empty their content into the canal (Fig. I.1). The GI 

canal consists of the mouth (the pharynx), esophagus (involving upper and lower esophageal 

sphincters), the stomach (comprising the cardia, fundus, corpus and antrum leading to the 

pyloric sphincter), the small intestine (composed of the duodenum, jejunum and ileum), the 

large intestine (composed of the cecum, colon and rectum) and the anus (comprising the 

internal and external anal sphincters). 

 

Fig. I.1 Schematic illustration of the anatomy of the gastrointestinal tract (adapted from Boron & Boulpaep, 

2009). 
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Motility, digestion, secretion, absorption and elimination are the major physiological 

processes occurring in the GI tract. These processes are well coordinated by the organs of 

the GI tract to efficiently digest food for taking in nutrients and eliminating waste. The 

interplay of several humoral and neuronal mechanisms regulates the different processes of 

the GI tract. Apart from those major functions described above, the GI tract also plays a vital 

role in the immune defense. 

The basic structural organization of the GI tract is relatively similar resembling a 

hollow cylindrical tube consisting of four concentric layers from inside to outside of the 

lumen (Fig. I.2): 

 The mucosa is the innermost layer enclosing the intestinal lumen; it consists of three 

sublayers, namely, the epithelium, the lamina propria (a layer of loose connective 

tissue containing the mucosal capillaries) and the muscularis mucosae (comprising a 

thin smooth muscle layer). 

 The submucosa is the second layer, also consisting of loose connective tissue along 

with the submucosal nerve plexus and blood vessels. 

 The muscularis externa is the third layer, consisting of inner circular and outer 

longitudinal smooth muscle layers, with the myenteric nerve plexus in between. 

 The adventitia is the outermost layer comprising loose connective tissue; when 

covered by the visceral peritoneum, it is called the serosa. 

 

Fig. I.2 Schematic representation of the different layers of the gastrointestinal tract (adapted from Marieb et 

al., 2004). 
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I.1.2 The mucosal epithelial cell layer 

The surface epithelium in the mucosa forms the border between the luminal content 

and the body. In the oral cavity, pharynx and esophagus, it consists of non-keratinized 

stratified squamous epithelium; in the stomach, the small intestine and almost the entire 

length of the large intestine, it consists of simple columnar epithelium; in the rectum and 

anus, it consists of stratified columnar epithelium followed by non-keratinized stratified 

squamous epithelium, and finally keratinized stratified squamous epithelium towards the 

end of the anal canal. Starch and lipid digestion start in the oral cavity via salivary amylase 

and lipase, and protein digestion starts in the stomach via pepsin. But digestion is mainly 

covered in the small intestine via the pancreatic enzymes, entering the duodenum via the 

ductus pancreaticus, and via the intestinal enzymes provided by the epithelial lining of the 

duodenum and jejunum. All digested nutrients and the majority of water, daily passing 

through the GI tract via oral intake and GI secretions, are absorbed in the jejunum and 

ileum. The epithelial surface of the small intestine is multiplied by 600 via three mechanisms: 

1) the valvulae conniventes hanging in the lumen (x 3); 2) the presence of finger-like 

projections, called intestinal villi, alternating with crypts in between (x 10); 3) the presence 

of numerous very small projections at the apical side of the epithelial cells, called microvilli  

(x 20) (Fig. I.3). This yields an estimated surface of 200 m2 allowing the absorptive function of 

the small intestine but also meaning that there is a great mucosal surface in contact with 

luminal contents and in danger of damage. The large intestine consists of a smooth surface 

interspersed with crypts; a last part of water is absorbed here to maintain the water balance 

and indigestible material is stored till defecation occurs. 

Unlike other mucosal sites, the intestinal epithelium is normally exposed to 

commensal bacteria and their products. The small intestine is only sparsely populated with 

bacteria while the large intestine contains around 1013 microorganisms. Thus, intestinal 

epithelial cells are the initial site of contact between the host and the gut microbiome. This 

epithelial layer prevents the uncontrolled passage of luminal contents to subepithelial 

tissues by forming a physical barrier between the luminal contents and the body (Karrasch & 

Jobin, 2009). 
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Fig. I.3 Illustration of a cross section through the small intestine with valvulae conniventes (A), villi (B) and 

epithelial cells featuring microvilli at the apical side (C) (from Pearson education). 

 

The intestinal epithelium is composed of different types of cells, each of them having 

a specialized function. The stem cells located near (small intestine) or in (large intestine) 

each crypt bottom continuously produce proliferating progenitor cells, which finally result in 

differentiated cells along the crypt-villus axis (Sancho et al., 2004; van der Flier & Clevers, 

2009). These differentiated epithelial cells can be further divided into cells of the absorptive 

and secretory lineages (Fig. I.4A). 

In the small intestine, the progenitor cells migrate to the crypt bottom to 

differentiate to Paneth cells or along the crypt-villus axis to proliferate several times and 

finally differentiate into absorptive epithelial cells, enteroendocrine cells or goblet cells (Fig. 

I.4B). The absorptive epithelial cells are called enterocytes in the small intestine and 

colonocytes in the large intestine; they represent the most numerous cell type in the 

intestinal epithelium contributing to the physical barrier (Sancho et al., 2003; van der Flier & 

Clevers, 2009). In the literature, the term "intestinal epithelial cells (abbreviated as IECs)" is 

used to describe the absorptive epithelial cells, and hence this description will be followed 

from now on in this thesis. The main function of IECs is efficient absorption and transport of 

nutrients from the luminal side towards the circulation. The Paneth cells, goblet cells and 
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Fig. I.4 (A) Scheme depicting intestinal stem cells, progenitor cells and the two differentiated branches of cell 

lineages, viz., the absorptive lineage (absorptive epithelial cells) and secretary lineage (Paneth, goblet and 

enteroendocrine cells). (B) Different cell types along the crypt-villus axis in the small intestinal epithelium 

(adapted from Radtke & Clevers, 2005). 

 

enteroendocrine cells are of secretory lineage developing from the same epithelial 

progenitor cells but differ from absorptive epithelial cells both in morphology and function. 

Paneth cells are restricted to the crypt in the small intestine and are located together with 

intestinal stem cells at the crypt base. They express antimicrobial peptides (AMPs) like  

α-defensins, lysozyme or phospholipase A, which along with the secretory immunoglobulin A 

(sIgA), contribute to host defence against a broad spectrum of pathogens like bacteria, fungi 

and viruses (Fig. I.5). Goblet cells secrete high molecular weight glycoproteins called mucins. 

These mucins result in the formation of a gel-like matrix covering the intestinal epithelium, 

which provides a protective function against physical and chemical injury. The mucin forms 

an IEC-adherent inner mucus layer that is largely impervious to bacterial penetration or 

colonization and a less densely cross-linked outer mucus layer, which is highly colonized by 

constituents of the microbiota. The mucus layer is thicker in the large intestine than in the 
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small intestine, which accounts for its effective protection against the large number of 

bacteria in large intestine (Fig. I.5). Finally, enteroendocrine cells coordinate the gut function 

by secreting specific gut hormones and are mainly found in the upper part of the small 

intestine. 

 

 

Fig. I.5 Distinct subpopulations of intestinal epithelial cells are integrated into a continuous, single cell layer 

that is divided into apical and basolateral regions by tight junctions to form an intact barrier in small (left) and 

large (right) intestine. AMPs: antimicrobial peptides; sIgA: secretory immunoglobulin A (adapted from Maynard 

et al., 2012). 

 

I.1.3 Intestinal epithelial homeostasis 

Since the IECs (enterocytes and colonocytes) are the major targets of invasive 

enterobacteria to induce mucosal damage, they have several crucial functions to maintain 

intestinal homeostasis apart from absorption. Connected by tight junctions, they form a 

physical barrier separating the sterile underlying gut layer from the non-sterile contents of 

the lumen (Fig. I.6). Additionally, they secrete regulatory cytokines (e.g. transforming growth 

factor-β) and electrolytes (e.g. chlorides and bicarbonates) to influence microbial 

colonization, they sense differences between beneficial (commensal) and harmful 

(pathogenic) microbes, and they initiate immune responses when necessary to maintain 

epithelial barrier integrity. In order to achieve this, they work in concerted action with the  
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Fig. I.6 Four components of the intestinal barrier (adapted from Anderson et al., 2012). 

 

other epithelial cell types of secretory lineage and with immune cells, together with the 

signals provided by the gut residing commensal microbiota. The gastrointestinal microbiota 

is composed of several species including bacteria and eukarya. The human body benefits 

from the commensal microbiota as many of them live in a homeostatic symbiosis with the 

host. The commensal bacteria help in water and electrolyte retention, and could even 

modulate tissue development and repair (Leser & Molbak, 2009). However, upon ingestion 

of food, potential pathogens can enter the intestinal lumen. Therefore, the intestinal 

epithelium is constantly challenged with the discrimination between beneficial and 

pathogenic organisms. The mucus layer above the IECs acts as a chemical barrier to 

undesired invasion of foreign organisms and toxins, and thus plays a crucial role in intestinal 

homeostasis. The gut has a mucosal immune system called the gut-associated lymphoid 

tissue (GALT); this consists of both organized (e.g. Peyer’s patches and M-cells) and diffuse 

structures (e.g. intraepithelial lymphocytes and gut-draining mesenteric lymph nodes) to 

maintain homeostasis. Upon exposure to bacteria, phagocytic cells like macrophages (mɸ) 

and dendritic cells (DCs) detect the antigens resulting in activation of lymphocytes (like  

B-cells) to trigger the immune response. The GALT forms the largest immune system in the 

body. The two main functions of GALT are to enable protective immunity against harmful 
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pathogens (like bacteria, viruses and protozoans) and to ensure immunological tolerance to 

harmless materials (like dietary components and commensal bacteria). Additionally, non-

immunogenic mechanisms like gastric acid secretion, intestinal mucin and gut motility are 

also important to protect against the pathogens and maintain a healthy intestinal microflora 

(Boron & Boulpaep, 2009). 

Taken together, a tightly regulated cross-talk exists between IECs, commensal 

bacteria and immune cells in order to maintain intestinal homeostasis. It is now clear that 

the intestinal barrier comprises microbiological, chemical, physical and immunological 

components (Fig. I.6). 

One unique feature of IECs is thus that they are constantly exposed to high 

concentrations of nutrients, microbes and xenobiotics. The regulation of the function of IECs 

is controlled by both external substances through food components and microbes, and 

factors like hormones and cytokines (Shimizu, 2010). IECs were once considered as an inert 

physical barrier, but over the last few decades it has been increasingly realized that they 

express a cadre of surface receptors (like pattern recognition receptors; PRRs) that allows 

direct communication between the human body and the intestinal microbiota. Apparently, 

IECs can manage the numbers and types of microbes present in the gut microbiota through 

regulation of their colonization and penetration of the epithelium. This is effectively 

achieved by secretion of AMPs by the enterocytes themselves together with the Paneth 

cells. This epithelial sensing of microbes is critical as the alterations in the composition of the 

microbiota are now believed to predispose to chronic diseases like inflammatory bowel 

disease (IBD) (Asquith & Powrie, 2010). 

The intestinal homeostasis is primarily regulated by a delicate balance of the life and 

death of IECs. The intestinal epithelium has an enormous self-renewing capacity, the life 

span of a normal epithelial cell being four to five days. Undifferentiated stem cells proliferate 

within the crypt base, undergo a few rounds of cell division before they differentiate and 

migrate upwards along the crypt-villus axis. After three to four days, these terminally 

differentiated cells reach the tip of the villi (in the small intestine) or the surface epithelium 

(in the colon), followed by cell shedding as depicted in Fig. I.7 (Ramachandran et al., 2000; 

Sancho et al., 2004; Sato et al., 2009). Minor breaks in epithelial layer continuity are rapidly 

resealed by a cell proliferation-independent process called epithelial restitution; however, 

major damage by exaggerated epithelial cell death leads to barrier impairment. 
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Fig. I.7 Schematic intestinal construction with crypts and villi representing the small intestine (A), and the 

colon (B) solely exhibiting crypts. Dendritic cells (DCs) and macrophages (mɸ) are resident in the lamina propria. 

 

In order to maintain an efficient intestinal barrier, the rates of epithelial cell 

proliferation and cell death have to be tightly regulated. During normal conditions, aged 

epithelial cells in the villus tip (of small intestine) or the surface epithelial cuff (of colon) are 

believed to die by apoptosis. Among the various ways by which cells could die, apoptosis is a 

programmed cell death pathway which is physiologically relevant in the intestinal epithelium 

(Hall et al., 1994; Bullen et al., 2006). The main mechanism is usually thought to be 

activation of caspases, which are a class of cleavage enzymes involved in the breakdown of 

cells into apoptotic bodies. Under normal conditions, induction of apoptosis has been 

observed before shedding of human IECs without compromising epithelial barrier and the 

rate of IEC apoptosis varies significantly across the different sections of the intestinal tract 

(Grossmann et al., 2002). Apart from the villus tip, apoptosis also occurs at the crypt level to 

remove excess or unwanted stem cells (Leedham et al., 2005). 

Because of the complex structure and organization of the intestinal epithelium, the 

various processes of cell proliferation, differentiation, migration and cell death have to be 
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tightly controlled. Excessive cell death might result in barrier dysfunction and “leaky gut” 

allowing uncontrolled access of bacteria and their components to the gut wall (Fig. I.8). 

Increase in the rate of apoptotic cell death can create leaks contributing to barrier 

dysfunction. The subsequent entry of bacteria and luminal contents into the lamina propria 

leads to secretion of cytokines and chemokines by IECs and inflammatory cells (like 

macrophages, neutrophils and mast cells) to initiate an inflammatory cascade (Peterson & 

Artis, 2014). The accumulation of neutrophils with the release of enzymes and reactive 

oxygen species (ROS) enhances the inflammatory reaction. The study of Nenci et al., (2007) 

showed an essential role for nuclear factor-κB (NF-κB) essential modulator (NEMO) in the 

control of IEC apoptosis. In this study, mice deficient in the gene NEMO specifically in IECs 

were used; NEMO deficiency in IECs led to excessive tumor necrosis factor (TNF)-dependent 

apoptosis within the epithelium, followed by a barrier breakdown and the translocation of 

bacteria into the bowel wall driving inflammation. Apoptotic cells are rapidly phagocytized 

by macrophages, a process that represents a critical step in tissue remodeling, immune 

responses and the resolution of inflammation (Henson & Bratton, 2013). Apoptotic cell 

death plays thus an important role in inflammatory processes and in the resolution of 

inflammatory reactions. However, dysregulation of cell proliferation or resistance to cell 

death may result in tumor development in the gut (Mehlen & Puisieux, 2006; Maloy & 

Powrie, 2011). 

 

I. 2 Acute gastrointestinal inflammation 

 

I.2.1 The role of enterocytes in the immune responses of the GI tract 

Under normal situations, the immune responses maintain the intestinal mucosa in a 

state of 'controlled' inflammation, regulated by a delicate balance of pro-inflammatory and 

anti-inflammatory cytokines, to maintain intestinal homeostasis (Fiocchi, 2003). This is not 

surprising due to the fact that the intestinal mucosa is constantly exposed to limitless 

number of foreign antigens (e.g. commensal microbes, pathogenic bacteria, viruses and 

food-derived materials). Directly below the epithelium, numerous immune cells create a 

homeostasis between the commensal flora of the intestine and the host immune system.  
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Fig. I.8 Intact versus leaky intestinal barrier: When the intestinal barrier is functioning correctly, luminal 

bacteria and antigens are unlikely to pass across the epithelium into the lamina propria. In contrast, disruption 

of the intestinal barrier due to cell death leads to increased epithelial permeability (AMPs: antimicrobial 

peptides; adapted from Coskun, 2014). 

 

The innate immune system is well orchestrated by various pattern recognition receptors 

(PRRs) and immune cells. The Toll-like receptors (TLRs) and nucleotide-binding 

oligomerization domain (NOD)-like receptors (NLRs) play a key role in the innate gut 

immunity as they recognize the common structures on microorganisms called the pathogen-

associated molecular patterns (PAMPs). TLRs are widely present on the epithelial cells, 

Paneth cells, mɸ and DCs (Taniguchi et al., 2009; Garrett et al., 2010; Wells et al., 2010). The 

responsiveness of these cells to PRR ligands is tightly regulated in order to avoid exceeding 

response to commensal products. Polymorphonuclear leukocytes (PMNs; neutrophils), mɸ, 

DCs, T-cells and mast cells are the important team players in maintaining immunological 

homeostasis and host defense in the gut. The highly regulated immune responses by 

different epithelial and immune cells result in the induction and maintenance of intestinal 

homeostasis. However, defects in this equilibrium can disrupt the homeostatic mechanisms 

and lead to pathogenic intestinal inflammation. Damage and death of the epithelial cells lead 

to the breakdown of the intact barrier function resulting in access of luminal content to the 

immune components of the intestinal wall leading to a state of “uncontrolled” inflammation. 

The innate immune system of the intestine plays a vital role in initiating and perpetuating 

this “uncontrolled” inflammation (Fig. I.9). 
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Fig. I.9 The intestinal immune reaction to epithelial barrier disruption. Epithelial cell death in barrier tissues 

can cause barrier disruption, allowing commensal or environmental microbes to invade the tissue. Recognition 

of microbial pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) on IECs, and pattern 

recognition receptors on dendritic cells and macrophages induces the expression of cytokines and chemokines 

that attract and activate immune cells resulting in inflammation. The cytokine tumor necrosis factor (TNF) 

binds to its receptor TNFR to initiate inflammatory signaling. 

 

In order to fight invading pathogens, epithelial cells can recognize PAMPs by means 

of TLRs. Binding of PAMP to TLR can activate several downstream inflammatory signals such 

as NF-κB, leading to an upregulation of inflammatory cytokines like TNF-α and interleukin 

(IL)-6, and chemokines like IL-8 and monocyte chemoattractant protein (MCP)-1 (Medzhitov 

et al., 1997). Thus, the redox-dependent transcription factor NF-κB in IECs plays a pivotal 

role as a regulator of pro-inflammatory genes involved in the onset of the mucosal 
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inflammatory response following microbial infection (Savkovic et al., 1997; Elewaut et al., 

1999). Amongst others, TNF-α is a master orchestrator of inflammation in the intestine 

binding to its receptor TNFR to initiate inflammatory signaling (Dagenais et al., 2014). Upon 

cytokine secretion, neutrophils circulating in the capillaries of the lamina propria can 

become activated and migrate towards the site of inflammation. Simultaneously, neutrophil 

production is upregulated and neutrophil lifetime increases. The neutrophilic cytosol 

contains granules that are filled with a variety of proteins, such as defensins, 

bactericidal/permeability-increasing protein, proteases (e.g. elastase, cathepsins) and 

myeloperoxidase (MPO). Neutrophils are well known for their bactericidal role with 

formation of superoxide anion radicals (O2
) as one of the main bactericidal mechanisms 

(Klebanoff, 1967; Babior et al., 1973; Klebanoff & Rosen, 1978). Neutrophils can cause 

pathogen destruction upon the so-called “oxidative burst”, marked by an increased 

consumption of molecular oxygen (O2) and production of ROS and reactive nitrogen species 

(RNS) (Babior, 2000). O2
 generation by neutrophils is catalyzed by nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX), a membrane-bound enzyme complex 

(Suzuki & Lehrer, 1980). O2
 are dismutated into hydrogen peroxide (H2O2) by superoxide 

dismutase (SOD). MPO consumes H2O2 and generates hypochlorous acid (HOCl), the most 

bactericidal oxidant that is produced by neutrophils (Hampton et al., 1998; Nauseef, 2007; 

Freitas et al., 2009). 

In addition to the barrier dysfunction resulting in aberrant recognition of microbial 

products by the immune cells, death of IECs in the absence of pathogens can trigger 

intestinal inflammation. Inflammation as a result of trauma, burn, ischemia/reperfusion (I/R) 

injury or chemically induced injury typically occurs in the absence of any microorganisms and 

has therefore been termed “sterile inflammation”. In such a “sterile” setting, any stressed or 

injured cells release or expose certain molecules and cellular components into the 

extracellular environment that act as danger signals to alert the immune system to directly 

trigger inflammation. Such released factors are collectively called as damage-associated 

molecular patterns (DAMPs). DAMPs include, amongst others, cytokines (mainly of the 

interleukin family like IL-1β), heat-shock proteins, mitochondrial deoxyribonucleic acid 

(DNA), formyl peptides, cytochrome c and extracellular adenosine triphosphate (ATP). 

DAMPs are usually detected by PRRs that activate immune responses by inducing the 

expression of cytokines and chemokines by epithelial cells like IECs. Thus, apart from a 
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pathogen-triggered immunogenic response, in the absence of pathogens, cells can trigger 

inflammation through release of DAMPs. 

 

I.2.2 Oxidative stress 

 

I.2.2.1 ROS 

Oxidative stress is described as an imbalance between oxidants and antioxidants in 

favor of the oxidants, which can result in cell or tissue damage (Sies, 1997). In healthy 

conditions, formation of oxidants is balanced by the presence of a variety of antioxidants. 

Oxidants can be generated by the reduction of O2 to water (H2O), leading to the formation of 

ROS. ROS are intracellular chemical species that are formed upon partial reduction of O2, 

which include O2
, H2O2 and the hydroxyl radical (OH). Furthermore, free radicals, in 

general, are also considered as oxidants. Free radicals are molecules or molecular fragments 

that possess one or more unpaired electrons, which are responsible for the high reactivity of 

the radical. Free radicals can be charged positively or negatively or be electrically neutral. 

They are formed from a normal molecule by either homolytic cleavage of a covalent bond, 

requiring high energy input (e.g. ultrasound, ultraviolet radiation), or addition or loss of a 

single electron. In biological processes, the electron transfer plays a major role in the 

generation of free radicals, as it can be initiated by enzymatic reactions (Slater, 1984; 

Cheeseman & Slater, 1993). In healthy conditions, oxidant formation is scavenged by various 

antioxidant mechanisms in the cell. The main antioxidant enzymes are SOD, catalase and 

glutathione peroxidase (GPx). Moreover, reduced glutathione (GSH; L-γ-glutamyl-L-cysteinyl-

glycine), a tripeptide containing a thiol group, is an important intracellular antioxidant. 

O2
 is a primary ROS generated by the one-electron reduction of O2 and is a short-

living radical (Fig. I.10). 

Either spontaneously or through catalysis by SOD, O2
 are dismutated into H2O2, which is 

relatively stable, less toxic and capable of diffusion across membranes: 

2O2
− + 2H+ → O2 + H2O2 

O2
 in the cytosolic and mitochondrial matrix are dismutated by Cu/Zn-SOD (SOD1) and Mn-

SOD (SOD2), respectively. 

The formed H2O2 leads to the generation of hydroxyl radicals (OH) in the presence of 

ferrous iron (Fe2+) through the Fenton reaction: 
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Fe2+ +  H2O2 →  Fe3+ +  OH +  OH− 

OH is a very short-lived and highly reactive radical which attacks the fatty acid side chains of 

the membrane phospholipids (called lipid peroxidation) to cause cell disruption. The risk of 

formation of OH from H2O2 is reduced by GPx and catalase. 

GPx are a class of enzymes involved in the catalytic degradation of H2O2 using GSH as a 

substrate where it is oxidized to glutathione disulfide (GSSG), resulting in the formation of 

water: 

H2O2 + 2GSH → 2H2O + GSSG 

Subsequently, GSH is recovered by GSSG reductase (Sies, 1997, 1999). Determination of the 

changes in intracellular GSH content and the GSH/GSSG ratio is a widely used marker for 

cellular response to oxidative stress. 

Additionally, H2O2 can also be degraded into water and molecular oxygen by catalase: 

2H2O2 → O2 + 2H2O 

A considerable part of H2O2 formed is consumed by MPO in the neutrophils, for the 

formation of HOCl, a highly bactericidal oxidant, used for the phagocytic defense: 

Cl− + H2O2 → HOCl + OH− 

Furthermore, neutrophils and, more importantly macrophages, are capable of producing 

RNS, especially nitric oxide (NO), via the inducible nitric oxide synthase (iNOS) by 

consumption of NADPH and conversion of L-arginine to L-citrulline: 

Larginine + O2 + NADPH → NO + Lcitrulline + NADP+ 

The resulting NO can further react with O2
 to generate the highly mutagenic and cytotoxic 

peroxynitrite anion (ONOO): 

NO + O2
− → ONOO− 

Once considered as a deleterious by-product of respiration in mitochondria and cell 

metabolism, ROS are now increasingly realized to be essential “second messengers” for a 

myriad of biological responses like cell growth, differentiation and host defense (Forman et 

al., 2010; Vara & Pula, 2014). The distinct biological properties of each ROS like their 

chemical reactivity, stability and lipid diffusion capabilities determine specificity of their 

signaling (Reczek & Chandel, 2015). ROS could contribute to cell-survival or cell-death 

pathways, depending on both the site and the amount of ROS generation (Azad et al., 2009). 

However, increased levels of ROS with compromised antioxidant defense (and hence  
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Fig. I.10   Enzymes involved in the generation and inactivation of reactive oxygen species (ROS). The superoxide 

anion (O2
) can be produced by NADPH oxidase (NOX), xanthine oxidase, uncoupled endothelial nitric oxide 

synthase (eNOS), and the leakage of activated oxygen (O2) from mitochondria during respiration. O2
 can be 

converted to hydrogen peroxide (H2O2) by the enzyme superoxide dismutase (SOD). H2O2 can undergo 

spontaneous conversion to the hydroxyl radical (OH) via the Fenton reaction. H2O2 can be detoxified by 

glutathione (GSH) peroxidase and catalase to H2O and O2. Myeloperoxidase (MPO) can use H2O2 to oxidize 

chloride to the strong oxidizing agent hypochlorous acid (HOCl). 

 

oxidative stress) are often associated with many pathological conditions of all organ systems 

(including GI) and aging. 

Indeed, higher levels of ROS damage almost all components of the cells including 

lipids, proteins and DNA resulting in lipid peroxidation, protein oxidation and nucleic acid 

oxidation with DNA damage, respectively. At the cellular level, the transcriptional factor 

nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master regulator of 

antioxidant genes and hence of antioxidant status (Copple, 2012). 

The major sources of ROS in a cell include the NOXs and the mitochondrial electron 

transport chain (ETC) where O2
 is formed as the main product and by-product, 

respectively. Other enzyme systems that generate ROS are xanthine-xanthine oxidase (XO), 

uncoupled endothelial nitric oxide synthase (eNOS), cyclo-oxygenase (COX), lipoxygenase, 

glucose oxidase and cytochrome P450 oxidases. 
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I.2.2.2 NOXs 

NOXs are a family of enzymes solely devoted to the production of O2
 in cells and tissues. 

There are seven members in the NOX family – NOX1-5 and dual oxidase (DUOX)1-2 (Bedard 

& Krause, 2007). The first member, now known as NOX2, was initially discovered in 

neutrophils, but NOXs are now known to be present in many other cell types including 

epithelial cells (Bedard & Krause, 2007). NOX1 and DUOX2 are the NOX isozymes expressed 

in the IECs (Lambeth, 2004). They are multi-subunit membrane-bound enzyme complexes 

that, upon assembly in activated cells, catalyze the reduction of O2 to O2
 using NADPH. 

NOX are present in the plasma membrane and in the membranes of intracellular vesicles and 

organelles. Various subunits that are located in the cytosol and in the membrane assemble 

to form the active NOX enzyme. The catalytic subunit of the predominantly expressed NOX2 

is gp91phox, a 91-kDa glycoprotein subunit; the active enzyme complex is formed by the 

association of the regulatory subunit p22phox with the four other cytosolic subunits: 

p40phox, p47phox, p67phox and the guanosine triphosphate hydrolase (GTPase) Rac (Fig. 

I.11). The small G-protein Rac, in its GDP-bound form, is stabilized by Rho GDP dissociation 

inhibitor (RhoGDI) in the resting state. Binding of ligands to the membrane-bound receptors 

adjacent to NOX enzyme generally initiates the activation cascade of complexes; the ligands 

include lipopolysaccharide (LPS), cytokines like TNF, growth factors, increased glucose and 

free fatty acids. Upon activation, the cytosolic subunits migrate towards the membrane-

bound subunits to bind and configure the active enzyme complex. NOX-derived ROS has 

been implicated in a wide array of cellular and molecular functions like cell proliferation, 

migration, angiogenesis and apoptosis. 

 

I.2.2.3 Mitochondria as cellular sources of ROS 

Mitochondria produce O2
 as an unavoidable byproduct of aerobic respiration when 

electron transfer occurs through the different ETC complexes I through V (Fig. I.12). At least 

seven distinct sites of mitochondrial O2
 production have been described in the 

mitochondria (Brand, 2010), but only the major sites are shown in Fig. I.12. During normal 

physiological conditions, complexes I and III are the major sites of O2
 production (Turrens & 

Boveris, 1980). During pathological conditions, complex II can also participate in O2
 

production by reverse electron transfer (Drose, 2013). Except for complex II, all other ETC 
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Fig. I.11   Diagrammatic representation of the resting and activated forms of NADPH oxidase2 (NOX2) upon 

exposure to ligands from microbes (e.g. LPS) and inflammatory mediators (e.g. TNF). Activation involves 

translocation of the cytosolic subunits p47phox, p67phox, p40phox and Rac to the membrane where they bind 

to p22phox and gp91phox subunits. The Rac protein bound to Rho GDP dissociation inhibitor (RhoGDI) in the 

resting state translocates to the membrane upon activation. When assembled, the enzyme generates 

superoxide anion (O2
) by accepting electrons (e−) from cytoplasmic NADPH and donating them to molecular 

oxygen (O2). (Adapted from McCann & Roulston, 2013). 

 

complexes pump protons from the matrix into the intermembrane space, resulting in a 

proton gradient generating the mitochondrial membrane potential (Ψm). Ψm is utilized by 

complex V (ATP synthase) to synthesize ATP from ADP and phosphate, through the backflow 

of protons from the mitochondrial intermembrane space to the matrix. ROS production from 

mitochondria depends upon the availability of the substrates, type of tissue, redox state of 

the cells, animal species and age (Kudin et al., 2008). 

Recent reports suggest that activation of NOXs may increase production of mitochondrial 

ROS and vice versa, i.e., increase of mitochondrial ROS may activate NOXs (Daiber, 2010; 

Dikalov, 2011). Accordingly, NOX derived O2
 and H2O2 were reported to trigger 

mitochondrial dysfunction and ROS formation in angiotensin-II treated endothelial cells 

(Doughan et al., 2008). Mitochondria are not only a target for ROS produced by NOXs but 

also a significant source of ROS, which under certain conditions (like serum withdrawal)  
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Fig. I.12   The mitochondrial respiratory chain (which carries out oxidative phosphorylation) with its five multi-

subunit protein complexes (I-V) localized at the inner mitochondrial membrane. Electrons are prematurely 

leaked from the electron transport chain and are aberrantly transferred to molecular oxygen (O2) resulting in 

mitochondrial O2
 generation, occurring at complexes I, II and III. Complex III can generate O2

 in the 

intermembrane space as well as into the matrix. O2
 can escape from the intermembrane space into the 

cytoplasm via voltage dependent anion channels (VDAC); in the cytoplasm O2
 are subsequently dismutated to 

H2O2 by SOD1. O2
 generated into the matrix are dismutated by SOD2 (adapted from West et al., 2011). 

 

 

may stimulate NOXs (Kimura et al., 2005; Lee et al., 2006). This crosstalk between 

mitochondria and NOXs, therefore, may represent a feed-forward vicious cycle of ROS 

production which can be pharmacologically targeted under conditions of oxidative stress. 

Indeed, a mitochondria-targeted antioxidant has been demonstrated to break this vicious 

cycle, inhibiting ROS production by mitochondria, in this way reducing NOX activity (Dikalov 

et al., 2010). 
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I.2.3 Pathogenesis of acute GI inflammation: role of IEC dysfunction 

Epithelial barrier dysfunction is a common phenomenon observed during several 

acute GI inflammatory conditions. Acute GI inflammatory conditions include, amongst 

others, acute gastroenteritis (of bacterial and viral origin), postoperative ileus (POI), sepsis 

and septic ileus, necrotizing enterocolitis (NEC), appendicitis, pancreatitis and ischemic 

bowel disease. Two of these conditions are considered in detail. 1) POI as the occurrence of 

an inflammatory process in the GI wall in the first hours after intestinal manipulation is the 

main trigger for sustained suppression of GI motility; oxidative stress, also in the mucosal 

layer, might contribute to the pathogenesis. 2) Sepsis, where inflammation and oxidative 

stress are important pathogenetic factors and the intestine can have a triggering role, also 

leading to septic ileus. As intestinal I/R injury is involved in the triggering role of the intestine 

during sepsis, this pathogenetic complex is also discussed. 

 

I.2.3.1 POI 

POI is defined as a transient impairment of gastrointestinal motility after major 

abdominal surgery; it lasts 2 to 4 days until the first passage of flatus or stool combined with 

adequate oral intake during 24 h. Patients suffer from abdominal discomfort, nausea and 

vomiting. POI can delay postoperative recovery, increase the length of hospital stay and can 

induce morbidity; the economic impact of POI has been estimated at $750 million per year 

(Doorly & Senagore, 2012). The pathogenesis of POI is multifactorial; neurogenic inhibitory 

reflexes, inflammatory responses and pharmacological factors are three main mechanisms 

known to contribute to POI (Bauer & Boeckxstaens, 2004). In the first hours after surgery, 

inhibition of GI motility is mainly due to activation of reflex inhibitory nervous pathways 

(Bauer & Boeckxstaens, 2004; Boeckxstaens & de Jonge, 2009). The prolongation of GI 

motility suppression during POI is due to a complex immune-regulated inflammatory process 

in the intestinal muscularis, with a critical role for activation of the resident muscularis 

macrophage network (Kalff et al., 1999). The kinetically active substances NO (via iNOS) and 

prostaglandins (via COX-2) are released, as well as pro-inflammatory cytokines such as IL-1β, 

IL-6 and TNF-α, chemokines (MCP-1) and adhesion molecules like intercellular adhesion 

molecule (ICAM)-1. This leads to additional recruitment of circulating leukocytes and further 

release of inflammatory mediators (Boeckxstaens & de Jonge, 2009). Interestingly, oxidative 

stress might also contribute to POI. Surgical manipulation of the rat intestine resulted in 
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increased levels of oxidative stress in the mucosa with a significant increase in xanthine 

oxidase activity in the enterocytes (Anup et al., 1999). In addition, in a mouse model of POI, 

our group previously reported an increase in oxidative stress levels, measured as 

malondialdehyde (MDA; a by-product of lipid peroxidation) in both mucosa and muscularis 

of small intestine starting shortly after intestinal manipulation; the increase at 1 h after 

manipulation was more pronounced in the mucosa than in the muscular layer (De Backer et 

al., 2009). 

 

I.2.3.2 Sepsis and septic ileus 

Sepsis is defined as a systemic inflammatory response to infection (systemic 

inflammatory response syndrome; SIRS), which can progress to severe sepsis with multiple 

organ failure (MOF) and further to septic shock with acute circulatory failure and refractory 

hypotension. It is a frequent cause of mortality in intensive care. Sepsis is driven by a 

complex cascade of events, initiated by bacteria-derived molecules such as LPS or 

endotoxins with subsequent formation of inflammatory cytokines, ROS and RNS, I/R and 

mitochondrial dysfunction (Cinel & Opal, 2009). The intestine is very vulnerable during 

systemic inflammation and can trigger and perpetuate sepsis (Clark & Coopersmith, 2007). 

Conditions such as major trauma, extensive burns and hypovolemia lead to I/R of the 

intestine, triggering an intestinal inflammatory reaction and intestinal epithelial barrier 

dysfunction (Magnotti et al., 1998; de Haan et al., 2009; Flessas et al., 2011). Pro-

inflammatory mediators produced in the intestine also reach the systemic circulation, 

promoting systemic inflammation. Dysfunction of the epithelial barrier allows translocation 

of live bacteria and/or their components such as LPS through the intestinal mucosa, further 

reaching the circulation via the intestinal lymph nodes. The intestinal events are 

accompanied by severe impairment of intestinal motility (septic ileus), promoting bacterial 

colonization of the normally sterile small intestine and stomach; this will facilitate bacterial 

translocation and predisposes to pneumonia by aspiration of gastric content (Hassoun et al., 

2001; Deitch, 2002; Balzan et al., 2007). Animal models of sepsis consist of administration of 

LPS or bacteria, or cecal ligation and puncture (CLP) (De Winter & De Man, 2010). The 

mechanism of sepsis-induced ileus, as assessed by injecting LPS, shows similarity with that of 

the inflammatory phase of POI (Eskandari et al., 1997), although differences in the degree of 

particular responses were observed when comparing animals with a similar degree of transit 
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retardation, induced either by surgical intestinal manipulation or by intraperitoneal injection 

of LPS. The POI model induced a greater inflammatory response and a greater degree of 

leukocyte infiltration (Schmidt et al., 2012). IEC apoptosis is reported to increase following 

sepsis and overexpression of the anti-apoptotic protein Bcl-2 improved survival in multiple 

animal models of sepsis by prevention of intestinal apoptosis (Coopersmith et al., 2002a; 

Coopersmith et al., 2002b). 

 

I.2.3.3 Acute I/R injury of the gut 

I/R injury occurs due to the re-entry of the blood flow after interrupted blood supply 

for a time period, where the delivery of oxygen to the tissue was insufficient to support its 

metabolic demand. The reintroduction of blood flow with simultaneous re-oxygenation of 

the tissue after an ischemic episode initiates a cascade of events that can potentially worsen 

the original injury. The intestinal mucosa is extremely sensitive to I/R resulting in tissue 

edema and fluid movement into the intestinal lumen. Intestinal oxygen delivery can be 

impaired by both systemic and local vascular conditions. I/R injury of the gut is a significant 

problem in a variety of clinical conditions such as SIRS and MOF, small bowel 

transplantation, abdominal aortic aneurysm surgery, mesenteric artery occlusion, 

cardiopulmonary bypass, trauma and hemorrhagic shock (Collard & Gelman, 2001); this is 

associated with substantial morbidity and mortality (Grootjans et al., 2010). Intestinal I/R 

injury is a complex, multifactorial pathophysiological process; primary microcirculatory flow 

disturbances, caused by ROS production, lead to a subsequent inflammatory cascade. Tissue 

ischemia (leading to hypoxia) and oxidative stress increase expression of inflammatory genes 

like cytokines (e.g. TNF-α, IL-1β, IL-6), iNOS, prostaglandins and adhesion molecules [e.g. 

ICAM-1, vascular cell adhesion molecule (VCAM)-1, E-selectin], initiating local inflammation. 

The recruitment of circulating neutrophils at this initial site further amplifies the intensity of 

inflammation and neutrophil infiltration is one of the characteristic microvascular alterations 

noted with I/R injury. In addition, the widespread endothelial cell apoptosis and the loss of 

endothelial cells in the vessels supplying the intestine result in thrombosis directly in the 

intestine (Shah et al., 1997). This injury can further trigger a systemic inflammatory response 

in distant organs resulting in MOF (Turnage et al., 1994; Cuzzocrea et al., 2002; Ceppa et al., 

2003). I/R injury of the gut is associated with the breakdown of intestinal barrier function, 

which facilitates increased intestinal permeability and bacterial translocation into the portal 
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and systemic circulation leading to SIRS (Collard & Gelman, 2001; Fink & Delude, 2005). 

Apoptosis is reported as the major mode of IEC death caused by I/R injury in the small 

intestine (Ikeda et al., 1998; Liu et al., 2008; Wen et al., 2012). Experimental animal models 

of intestinal I/R injury suggest that ROS production during the reperfusion period is largely 

responsible for the injury (Gonzalez et al., 2015). Already in 1986, XO-derived O2
 was 

reported to initiate intestinal reperfusion injury (Grisham et al., 1986) (Fig. I.13). The 

presence of a higher concentration of XO in the small intestine makes it more susceptible to 

I/R injury than colon (van der Vliet et al., 1989). Recently, rats subjected to intestinal I/R 

injury were reported to show an increase in gp91phox and p47phox protein expressions in 

small intestinal mucosa suggesting a possible contribution of NOX-derived ROS during I/R 

injury (Gan et al., 2013). To the best of our knowledge, to date, no study is available in the 

literature investigating the involvement of mitochondria-derived ROS in intestinal I/R injury. 

Supplementation with antioxidants was reported to reduce I/R injury-induced mucosal 

damage in many animal studies (Mallick et al., 2004). 

 

I. 3 Treatment of POI and sepsis; the intestinal mucosa as treatment target 

 

I.3.1 Management of POI and sepsis in humans 

 

Management of POI for humans: Prevention or treatment of POI remains mainly supportive 

as no single treatment is available. Due to its multifactorial origin, treating POI generally 

consists of a multimodal approach, also called as fast-track-surgery. This approach includes 

minimally invasive laparoscopy, epidural local anesthetics, and early enteral feeding and 

mobilization (Kehlet, 2008). The fast-track approach has shown to reduce complications, 

accelerate recovery and reduce hospital stay. Other management strategies proposed to 

reduce POI are use of opioid receptor antagonists, opioid free analgesia (NSAIDs), laxatives, 

chewing gum, fluid restriction and avoidance of nasogastric tube feeding (Bauer & 

Boeckxstaens, 2004; Asgeirsson et al., 2010; Vather & Bissett, 2013) (Table I.1). 

 

Management of sepsis for humans: Sepsis is a complex phenomenon characterized by the 

non-specific nature of signs and symptoms to diagnose it. There are no approved drugs that 

specifically target sepsis. So, in addition to life supportive measures, other steps should be 
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Fig. I.13   Mechanism of XO-mediated free radical injury. During the ischemic episode, ATP is catabolized to 

hypoxanthine, which accumulates in the tissues. This results in a low energy state leading to an influx of Ca2+ 

into the cells. The intracellular Ca2+ then triggers the conversion of xanthine dehydrogenase (XDH) to XO via a 

calmodulin-regulated protease. Upon reperfusion, O2 is reintroduced into the tissues and interacts with XO and 

hypoxanthine to generate a burst of O2
 and H2O2, which, in their turn, interact to produce the more reactive 

OH. This results in recruitment and activation of granulocytes, which ultimately mediate reperfusion-induced 

microvascular injury (adapted from Granger et al., 1988). 

 

taken depending upon the severity of the clinical condition. However, the difference 

between sepsis, severe sepsis and septic shock is not easily detected in clinical practice. The 

most prominent therapeutic approach for sepsis treatment till date is early goal-directed 

therapy (EGDT) for sepsis (Daniels, 2011). This approach involves screening patients who are 

at high risk for developing sepsis by monitoring certain hemodynamic and physiologic 

parameters intensively (i.e., blood pressure, heart rate and respiratory rate) and 

administering aggressive treatment (i.e., fluids or vasopressor) within the early hours of 

potential treatment (called the “golden hours”) to maintain or restore the patient’s vitals 

back to optimal functioning before the syndrome progresses to a worsened state (Rivers et 

al., 2001). In addition, early administration of appropriate antibiotic therapy together with 

identifying the causative infectious agents (source control) are the other treatment  
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Table I.1 Management of POI by non-pharmacological and pharmacological treatment options 

(adapted from Behm & Stollman, 2003; Vather & Bissett, 2013). 

 

Non-pharmacological treatment options  

Treatment Potential mechanism 

Early enteral nutrition 
(or gum chewing) 
 
Early mobilization 
 
Laparoscopic surgery 
 
 

Stimulates GI motility by eliciting reflex response and 
stimulating release of several hormonal factors 
 
Possible mechanical stimulation 
 
Decreased opiate requirements, decreased pain, less 
abdominal wall trauma 
 

Pharmacological treatment options  

Treatment Potential mechanism 

Laxatives/prokinetic agents 
 
Opiate antagonists 
 
Epidural anesthesia 
 
 
NSAIDs 
 
 
Multimodal therapy 
 
 

Stimulant, prokinetic effects 
 
Block peripheral opiate receptors 
 
Inhibits sympathetic reflex at cord level, opioid-sparing 
analgesia 
 
Opioid-sparing analgesia, inhibits COX-mediated prostaglandin 
synthesis 
 
Combination therapy may work via multiple mechanisms 
 

 

approaches upon a patient’s presentation to the emergency department (Balk, 2004; Green 

& Gorman, 2014). Other treatment strategies for the management of sepsis include surgical 

drainage of infected site, optimizing O2 delivery to patients with lactic acidosis, use of low 

dose corticosteroid, targeted immunological therapy, glycemic control, appropriate nutrition 

and effective supportive therapy (Patel et al., 2003; Skrupky et al., 2011). 

 

I.3.2 Oxidative stress in the intestinal mucosa as treatment target 

The onset of an earlier oxidative burst in the mucosal layer than in the muscular layer 

after intestinal manipulation in a murine model of POI, reported by our group (De Backer et 

al., 2009) suggests that the mucosal layer might not only be a victim but also a (co-)trigger of 

surgically induced intestinal inflammation. Moreover, during SIRS, increase in gut mucosal 

permeability and bacterial translocation due to compromised epithelial barrier function can 

result in further progression of sepsis; this underlines the significance of intestinal mucosal 
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layer. Given the vital role of the intestinal mucosa in the pathogenesis of both POI and 

sepsis, strategies targeting towards protection of the mucosal layer could provide effective 

treatment for these acute GI inflammatory conditions. 

As oxidative stress has been implicated in both POI and intestinal dysfunction during 

sepsis, induction of antioxidant enzymes aimed to increase the antioxidant defense of the 

intestinal mucosa could be one of the ideal therapeutic strategies to combat such disorders. 

Among the set of antioxidant genes induced during stress in cells and tissues, heme 

oxygenase (HO)-1 has been emerging as a novel therapeutic target in the last few decades; it 

exerts an adaptive response to a wide range of injurious stimuli (Bauer et al., 2008; Agarwal 

& Bolisetty, 2013) implicated in many disease conditions (Deshane et al., 2005) including GI 

diseases (Naito et al., 2011). An ever-increasing list of compounds (including natural 

products and synthetic small molecules) known to induce HO-1 expression show therapeutic 

benefits during various disease conditions (Li et al., 2007; Abraham & Kappas, 2008; 

Motterlini & Foresti, 2014). Amongst them, the plant polyphenol resveratrol, in addition to 

its ability to induce HO-1, has gained much attention due to its diverse therapeutic potential 

in various diseases attributed to its antioxidant and anti-inflammatory properties (discussed 

in section I.3.4). 

 

I.3.3 The HO-1/carbon monoxide (CO) system; effects in POI and sepsis 

HO is the rate-limiting enzyme in the catabolism of heme resulting in the generation 

of CO gas, Fe2+ and biliverdin, the latter being subsequently reduced to bilirubin by the 

biliverdin reductase (BVR) enzyme. Originally thought of as a mechanism that only serves to 

dispose of heme, it is now clear that the products of heme metabolism have important 

functions under physiological and pathophysiological conditions. Three isoforms of HO have 

been identified, but there are doubts whether HO-3 has a functional role as it was never 

convincingly reported at the protein level (Hayashi et al., 2004; Wu & Wang, 2005). HO-1 is 

the inducible isoform while HO-2 is constitutive. Low levels of HO-1 is expressed in normal GI 

tract (Coeffier et al., 2002; Barton et al., 2003). HO-2 is present in enteric neurons (Miller et 

al., 2001; Colpaert et al., 2002), but also in non-neuronal cells in particular interstitial cells of 

Cajal (Grozdanovic & Gossrau, 1996; Miller et al., 1998). 
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I.3.3.1 Protective effects of HO-1 induction 

HO-1 is induced by a variety of physical and chemical stressors including heme, 

endotoxin, UV irradiation, heat shock and hemorrhagic shock, all sharing the ability to cause 

oxidative stress (Maines, 1997). Since the first report showing that HO-1 induction crucially 

controls inflammation in a model of carrageenan-induced pleurisy in rats (Willis et al., 1996), 

evidence has accumulated that induction of HO-1 is a fundamental adaptive response to 

oxidative stress and acute inflammation (Bauer et al., 2008), providing antioxidant, anti-

inflammatory and cytoprotective effects. The homeostatic role of HO-1 induction in 

mitigating the inflammatory response makes sense since ROS are indeed involved in the 

initiation and progression of inflammation (Mittal et al., 2014). Possible mechanisms include 

activation of TLRs and the Nacht domain-, Leucine-rich repeat-, and PYD-containing protein 

(Nalp)-3 inflammasome (Cannizzo et al., 2011) and formation of ONOO by rapid 

combination of O2
 with NO (Mittal et al., 2014). In the GI tract, expression of HO-1 is 

increased in many experimental models such as intraperitoneal (i.p.) treatment with LPS 

(Otani et al., 2000), intracolonic administration of trinitrobenzene sulfonic acid (Wang et al., 

2001) and surgical intestinal manipulation (De Backer et al., 2009). In patients with IBD, it 

was found that macrophages and epithelial cells of colonic mucosa exhibit an increased 

expression of HO-1 although levels of this protein decreased in the case of high 

inflammatory activity (Paul et al., 2005). Induction of HO-1 by exogenously administered 

hemin reduces GI inflammation and tissue injury (Attuwaybi et al., 2004; Zhong et al., 2010; 

Yoriki et al., 2013). HO-1 induction was also shown to mediate the protective effects of the 

amino acid glutamine in the GI tract (Uehara et al., 2005; Giris et al., 2006; Giris et al., 2007) 

and to be a mechanism of action of 5-aminosalicylic acid, a classic agent used for the 

treatment of IBD (Whittle & Varga, 2010). Similar to what has been proposed for the nervous 

and cardiovascular systems, this opens the possibility of exploiting the HO-1 pathway as a 

therapeutic target for GI inflammation. 

 

I.3.3.2 Role of the by-products of HO-1 

The antioxidant and anti-inflammatory effects of HO-1 induction are related to the 

breakdown of heme, which is known for its pro-oxidant and cytotoxic properties, and to a 

concerted action of the three products of heme metabolism namely Fe2+, biliverdin and CO 
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(Ryter & Choi, 2009). These emerging findings led gradually to the investigation of the 

biological effects and possible pharmacological application of each single by-product of  

HO-1. First of all, free Fe2+ could be expected to act as a pro-oxidant through the generation 

of OH in the Fenton reaction. However, induction of HO-1 is accompanied by a concomitant 

up-regulation of ferritin (Nath et al., 1992; Ren et al., 2007), which sequesters Fe2+ and has 

antioxidant properties (Arosio et al., 2009). Additionally, an anti-apoptotic effect of heavy 

chain ferritin was shown in an I/R model of the liver (Berberat et al., 2003). Biliverdin is 

quickly reduced by BVR to bilirubin, which has been reported to act as potent intracellular 

antioxidant against lipid peroxidation (Stocker et al., 1987). Exogenous administration of 

nanomolar concentrations of bilirubin restored post-ischemic myocardial function and 

minimized infarct size similarly to induction of HO-1 by hemin, suggesting a primary role of 

bilirubin in HO-1-mediated tissue protection against reperfusion injury (Clark et al., 2000). 

Bilirubin also protects against I/R injury in the intestine, an effect that is associated with a 

decrease in intestinal lipid peroxidation products (Ceran et al., 2001; Hammerman et al., 

2002). In a Dutch study, Caucasian patients with Crohn’s disease, where oxidative stress is 

thought to contribute to the pathogenesis, significantly less often beared the uridine 5’-

diphospho-glucuronyltransferase (UGT) 1A1*28 homozygous genotype, the latter genotype 

being associated with Gilbert’s syndrome and increased bilirubin levels (de Vries et al., 

2012). Correspondingly, patients with Crohn’s disease showed significantly lower serum 

bilirubin levels compared to controls in a study in the Czech republic (Lenicek et al., 2014). 

Exogenous applications of bilirubin might thus be considered for the treatment of GI 

conditions where oxidative stress is involved. As biliverdin is rapidly reduced to bilirubin, 

exogenous administration of biliverdin was also attempted with success. In the GI tract, 

biliverdin attenuates transplantation-induced injury of the small bowel (Nakao et al., 2004) 

and ameliorates dextran sodium sulfate-induced colitis (Berberat et al., 2005). CO seems to 

contribute most significantly to the antioxidant, anti-inflammatory and cytoprotective 

effects of the HO-1 pathway (Motterlini & Otterbein, 2010) in line with early reports that 

exogenous CO mimicked the protective effects of HO-1 induction even under inhibition of 

HO-1 activity (Sato et al., 2001). This explains the recent efforts to exploit the use of CO as a 

therapeutic agent to mimic the inherent beneficial actions of the HO-1 pathway. 
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I.3.3.3 Mechanisms of action of CO 

The precise molecular mechanisms by which CO exerts its protective effects have not 

yet been fully elucidated. The major mechanisms of action that have been proposed, mainly 

on the basis of data in cell lines and non-GI tissue, are described below and each of them 

might after all be equally important, with one mechanism prevailing over the other(s) 

depending on the type of cell and/or tissue being considered. CO binds preferentially and 

with high affinity to transition metals, in particular to the reduced form of heme iron (Fe2+) 

present in hemoproteins like hemoglobin, soluble guanylate cyclase (sGC), COX, cytochrome 

p450, cytochrome c oxidase, NOS, and NOX (Estabrook et al., 1970; Dioum et al., 2002; 

Akamatsu et al., 2004; Roberts et al., 2004; Ryter & Otterbein, 2004; Boczkowski et al., 

2006). 

Activation of sGC/p38 mitogen-activated protein kinase (MAPK) by CO: CO is believed to 

act via activation of sGC, leading to an increase in intracellular cyclic guanosine 

monophosphate (cGMP). The inhibitory effect of CO on leukocyte adhesion in mesenteric 

venules and on neutrophil migration into the peritoneal cavity induced by carrageenan is 

counteracted by the sGC inhibitor 1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) 

(Freitas et al., 2006). CO seems to modulate MAPK-related pathways (Ryter et al., 2006; Kim 

et al., 2007). Accordingly, the inhibitory effect of CO on LPS-stimulated macrophages was 

related to further enhancement of p38 MAPK expression (Otterbein et al., 2000) and the 

involvement of p38 MAPK activation in the beneficial effects of CO has since been reported 

in many models in vivo (Otterbein et al., 2003; Zhang et al., 2003; Kohmotoa et al., 2007). 

However, CO is unlikely to activate p38 MAPK directly as it lacks a transition metal centre in 

the protein structure that would function as a binding site for the gaseous molecule. Thus, 

the p38 MAPK activation by CO might be the result of another upstream target. 

Interaction of the HO-1/CO pathway with iNOS: In LPS-stimulated macrophages, CO 

decreased nitrite (marker of NO production) levels without changing iNOS protein 

expression (Sawle et al., 2005) suggesting that CO might inhibit iNOS activity. However, in 

the same model, Tsoyi et al., (2009) reported that CO is able to reduce iNOS expression, and 

this was also observed in LPS-treated human umbilical vein endothelial cells (Sun et al., 

2008). 
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Anti-/pro-oxidant effect of CO: Inhibition of NOX by CO, probably by binding to the heme-

containing gp91phox/NOX2 unit, was shown to be involved in the anti-inflammatory actions 

of CO in LPS-stimulated macrophages (Nakahira et al., 2006) and its anti-proliferative actions 

in human airway smooth muscle cells (Taille et al., 2005). The inhibitory effect of CO on 

vascular smooth muscle cell migration has been related to inhibition of NOX1 (Rodriguez et 

al., 2010). In contrast, binding of CO to cytochrome c oxidase (complex IV of the 

mitochondrial respiratory chain) was reported to result in a significant burst of 

mitochondrial ROS production and a concomitant conditioning of the cell with up-regulation 

of antioxidant and cytoprotective genes, which protects it upon subsequent stress 

stimulation (Bilban et al., 2008). Moreover, in a CLP model, CO induced a mild mitochondrial 

oxidative stress response in the heart which stimulated mitochondrial biogenesis and 

improved bioenergetics in association with a reduced inflammatory response (Lancel et al., 

2009). This was confirmed in a recent study performed in isolated rat heart mitochondria (Lo 

Iacono et al., 2011) showing that low micromolar concentrations of CO, probably by binding 

to cytochrome c oxidase and/or other unidentified targets in the respiratory chain, increase 

oxygen consumption and mitochondrial H2O2 production when physiologically stimulating 

the electron transfer chain with pyruvate/malate, but significantly decrease the burst of ROS 

induced by stimulating the reverse electron flow in mitochondria, a phenomenon that 

appears to typify oxidative and inflammatory disease states (Chen et al., 2007). The latter 

effect of CO limiting excessive mitochondrial ROS production was attributed to mild 

“uncoupling” of respiration from ATP synthesis by CO, with a drop in Ψm due to movement 

of protons from the intermembrane space to the mitochondrial matrix (Lo Iacono et al., 

2011). 

Induction of HO-1 by CO: The beneficial effects of CO might also be related, at least in some 

circumstances, to induction of HO-1 providing a positive feedback loop (CO→ induction of 

HO-1→ more CO→ further induction of HO-1) and allowing the ROS scavenging properties of 

biliverdin/bilirubin to come into play (Rodella et al., 2006). In human endothelial cells, CO 

induces HO-1 expression through a mechanism involving Nrf2 activation. This has been 

shown to be associated with upstream activation of PERK (protein kinase R-like endoplasmic 

reticulum kinase), one of the three endoplasmic reticulum stress sensors; this correlated 

with protection against endoplasmic reticulum stress-induced endothelial cell apoptosis (Kim 

et al., 2007). 
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I.3.3.4 Administration of CO as therapeutic agent 

CO gas: The recognition that HO-1-derived CO functions as a signaling and cytoprotective 

intracellular mediator prompted scientists to devise strategies to deliver CO safely for 

therapeutic purposes. CO administered as gas at doses that do not compromise the oxygen 

carrying capacity of hemoglobin (Hb) was firstly used in vivo to show that it protects against 

hyperoxic injury in rat lung (Otterbein et al., 1999). Since then, inhalation of CO gas at doses 

of 250 ppm (i.e., particles per million) for a short period of time has shown efficacy in many 

animal models of disease and devices for applying CO gas by inhalation in man have been 

developed (Motterlini & Otterbein, 2010). Recently, the distribution of CO upon CO 

inhalation was reported to be tissue-specific, with the increase in CO levels versus basal, 

immediately after inhalation of 250 ppm CO for 1 h in rats, ranging from 32-fold in spleen to 

2-fold in intestine (Vanova et al., 2014). Despite the fact that these recent findings 

emphasizing the potential use of CO gas as a therapeutic agent in pathophysiological states, 

the undesired effect of CO gas inhalation on the oxygen-carrying capacity of Hb is a crucial 

aspect that needs to be addressed before CO gas can be approved as a therapeutic agent. 

CO in preservation solution: In transplantation surgery, CO has also been proposed to be 

used ex vivo as an adjuvant to preservation solution in which organs are normally stored 

prior to grafting. Indeed, cold storage of rat intestinal grafts in University of Wisconsin 

solution vigorously bubbled with 5% CO for 5 min before transplantation in recipient animals 

has been reported to markedly reduce the up-regulation of inflammatory mediators and 

improve graft blood flow and mucosal barrier function (Nakao et al., 2006b). Similar data 

have been obtained for rat kidney and lung grafts (Kohmoto et al., 2008; Nakao et al., 2008) 

and for renal transplantation in pigs (Yoshida et al., 2010). In contact with air, the CO-

bubbled storage solution quickly loses CO by release into air, so that the CO-bubbled 

solution must be kept in a tightly sealed container without an air layer to keep the CO 

concentration constant (Kohmoto et al., 2008). 

CO-releasing molecules (CO-RMs): For this and other reasons, CO-RMs were developed to 

create the opportunity to deliver CO in a more practical, controllable and accurate way to 

the target site in comparison to CO gas inhalation. The most extensively studied CO-RMs 

today consist of two classes: 1) metal carbonyl complexes containing ruthenium, manganese 
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or molybdenum which carry CO bound to metals and 2) boranocarbonates, which do not 

contain transition metals and release CO spontaneously based on pH changes (Fig. I.14). 

While the original CO-RMs (CORM-1 and CORM-2) had to be dissolved in organic solvents 

like dimethyl sulfoxide (DMSO) (Motterlini et al., 2002), water-soluble CO-RMs such as 

CORM-A1 and CORM-3 have been subsequently developed with different CO release kinetics 

(Clark et al., 2003; Motterlini et al., 2005). 

In many animal models of inflammation, I/R injury and oxidative stress, these and 

other similar CO-RMs were shown to have beneficial effects similar to CO gas (Motterlini, 

2007; Motterlini & Otterbein, 2010). In the context of organ preservation, and similarly to 

what has been described with CO gas above, addition of CORM-A1 and CORM-3 during 

kidney cold storage markedly increased glomerular filtration rate, vascular activity and 

energy metabolism at reperfusion (Sandouka et al., 2006). Despite these agents need to be 

optimized and one has to keep in mind the possible toxicity originating from the molecule 

after release of CO especially when used chronically, CO-RMs offer a great opportunity in 

drug discovery as they diverge from classical organic drugs and represent one of the few 

examples where transition metals are used as scaffolds to deliver the active principle. For 

instance, a metal within the CO-RMs scaffold can be viewed as the “Achilles heel” in the 

development of these molecules to drugs, due to the common perception that transition 

metals per se can catalyze cytotoxic reactions. However, a great portion of structural and 

enzymatic proteins in cells contain transition metals, and several metal-handling proteins 

that protect cells against potentially toxic metal-based reactions are known, suggesting that 

biological tissues may be able to tolerate low levels of metal carbonyls (Foresti & Motterlini, 

2013). Interestingly, we are gradually learning that the transition metal in CO-RMs appears 

to be influential in transferring efficiently CO into the cells and limiting the potential toxic 

effects of free CO gas (Foresti & Motterlini, 2010; Michel et al., 2012). 

 

I.3.3.5 Toxicity of exogenous CO 

The interaction of CO with transition metals is central to the dichotomous nature 

(toxicity vs. beneficial effects) of this gaseous molecule. CO binds to Hb with a 200 to 250 

times higher affinity than O2 forming carbon monoxide-hemoglobin (COHb), that decreases 

the capacity of blood to deliver O2 to the tissues. The basal COHb level in man is 0.1 to 1%  
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Fig. I.14  Chemical structures and features of the first generation of CO-RMs (adapted from Foresti et al., 2008). 

 

in the absence of environmental contamination or smoking (Ryter & Choi, 2013). Toxicity 

symptoms can occur by COHb levels from 10% on (Von Burg, 1999). Using COHb levels as a 

marker, it was shown that the systemic amounts of CO upon exogenous CO administration 

must be of a much higher order than when stimulating endogenous CO production by HO-1 

induction (Foresti et al., 2008). In experimental studies with CO or CO-RMs, one thus usually 

attempts to keep COHb levels below 10%, levels that are also occasionally encountered in 

heavy smokers. Still, one can be reluctant to apply chronically CO or CO-RMs e.g. for 

treatment of IBD, in doses inducing COHb levels of 5-10%. Deleterious effects to the heart 

were indeed shown for chronic ambient CO levels as low as 30 ppm with peaks of 100 ppm 

(Andre et al., 2010; Reboul et al., 2012). Short term CO therapy should be devoid of such 

effects and can be expected to be easier acceptable for application in man. 
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I.3.3.6 Effect of CO in POI 

The preclinical studies investigating the influence of CO on the inflammatory phase of 

POI by manipulating the small intestine after laparotomy and measuring transit 24 h after 

surgery, are summarized in Table I.2. 

CO gas: Moore et al., (2003) reported that inhaled CO (250 ppm for 1 h before and for 24 h 

after surgery) in mice significantly improved the prolongation of transit induced by surgery, 

corresponding with improvement of the surgery-induced suppression of spontaneous and 

betanechol-induced activity in small intestinal circular muscle strips obtained 24 h after 

surgery. CO is known to relax GI smooth muscle in vitro, and might retard GI transit in vivo by 

this effect, but CO inhalation in control non-operated animals did not significantly influence 

transit. Surgery increased iNOS mRNA expression in the small intestinal muscular layer at 3 

and 6 h, and nitrite release in the culture medium of muscular material obtained 24 h after 

surgery; these effects were suppressed by CO inhalation, suggesting that CO might act by 

inhibiting iNOS gene expression as well as iNOS activity. Surgery also increased the mRNA 

expression of pro-inflammatory IL-1β, IL-6 and COX-2, and of anti-inflammatory IL-10 and 

HO-1; CO reduced IL-1β expression and further enhanced IL-10 and HO-1. This supports that 

the beneficial effects of CO are at least partially due to increased HO-1 expression. 

Interestingly, the increase in muscular leukocyte infiltration by surgery was not suppressed 

by CO. 

The same group (Moore et al., 2005) showed in rats that inhaling 250 ppm CO for 3 h 

before surgery was sufficient to fully reverse surgery-induced retardation in transit, even 75 

ppm being sufficient; this certainly means a more feasible schedule for testing in humans 

than prolonged inhalation. They also showed that 250 ppm for 3 h before surgery is effective 

in pigs that received repetitive opioid analgesia after surgery to mimic the human condition 

where the GI inhibitory effects of opioid analgesics also contribute to ileus. Blood COHb 

levels reached 6% just before surgery and progressively declined thereafter. Although CO 

inhalation suppressed the increase in total blood white cell count at 4 h after surgery, it did 

not suppress muscular leukocyte infiltration at 24 h, again suggesting that CO by inhalation is 

not able to inhibit additional leukocyte recruitment during the pathogenesis of POI. 

 

 



Chapter I 

Literature survey 
 

53 
 

Table I.2 Effects of CO on GI motility and on inflammatory parameters in the muscular layer in 

preclinical models of postoperative ileus. 

 

Reference 
Moore et al., 
2003 

Moore et al., 
2005 

Moore et al., 
2005 

Nakao et al., 
2006a 

De Backer et al., 
2009 

      Species Mouse Rat Pig Mouse Mouse 

      CO source Inhalation 
250 ppm 
1h before to 24h 
after surgery 

Inhalation 
250 ppm 
3h before 
surgery 

Inhalation 
250 ppm  
3h before 
surgery 

Intraperitoneal 
Ringer's 
lactate, 100% 
CO bubbled, at 
end of surgery 

Intraperitoneal 
CORM-3 
40 mg.kg-1 
3h and 1h before 
surgery 

Blood carboxyhemoglobin - - 6% 8% 2.3% 

      

 
POI        +CO POI        +CO POI        +CO POI        +CO POI        +CO 

GI transit (24h)   ↓           ↑    ↓           ↑                   ↑    ↓           ↑    ↓           ↑  

In vitro muscle activity   ↓           ↑            -           -           -   ↓           ↑  

In vitro betanechol   ↓           ↑            -   ↓           ↑            -           - 

      sGC involvement in CO effect           -           -           -                 Yes           - 

      p38 MAPK phosphorylation           -           -           -   ↑            =   ↑           ↑  

ERK MAPK phosphorylation           -           -           -   ↑           ↓    ↑           ↓  

JNK MAPK phosphorylation           -           -           -   ↑           ↓        ↑            = 

      iNOS mRNA   ↑           ↓            -           -   ↑           ↓            - 

          activity           -           -           -           -   ↑           ↓  

      ROS           -           -           -           -   ↑           ↓  

      HO-1 mRNA   ↑           ↑            -           -   ↑            =           - 

          protein           -           -           -           -   ↑           ↑  

HO total activity           -           -           -           -   ↑           ↑  

      MPO (infiltrating leucocytes)   ↑            =           -   ↑            =   ↑           ↓    ↑           ↓  

      IL-1 β mRNA   ↑           ↓           -           -   ↑           ↓            - 

IL-6 mRNA (protein in 4)   ↑            =           -           -   ↑            =   ↑           ↓  

IL-10 mRNA (protein in 4)   ↑           ↑            -           -   ↑           ↑    ↑           ↑  

      COX-2 mRNA   ↑            =           -           -   ↑           ↓            - 

      ICAM-1 mRNA (protein in 4)           -           -           -   ↑           ↓    ↑           ↓  

MCP-1 mRNA (protein in 4)           -           -           -   ↑            =   ↑           ↓  

      NF-κB DNA binding activity           -           -           -   ↑           ↓            - 

 

-: not determined. 
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CO in i.p. solution: Following the report that intestinal grafts performance is enhanced by 

preserving them in organ preservation solutions saturated with CO (Nakao et al., 2006b), 

Nakao et al., (2006a) showed that an i.p. injection of Ringer’s lactate solution bubbled with 

100% CO for 15 min just before closure of the abdomen prevented postsurgical ileus in mice. 

COHb levels attained almost 8% at 5 min after administration of CO but decreased to less 

than 4% within 30 min. This very elaborated study showed that treatment with solutions 

containing CO affects surgery-induced mRNA expression of pro- and anti-inflammatory 

parameters as reported for inhaled CO, except that the induction of HO-1 mRNA was not 

further enhanced by CO (Moore et al., 2003). Importantly, CO by i.p. injection suppressed 

muscular leukocyte infiltration. The study further showed that surgery induced activation of 

the MAPK p38, extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinases 

(JNK), and of the transcription factor NF-κB; except for p38, these effects were suppressed 

by CO. The majority of the effects of CO were diminished by pretreatment with the sGC 

inhibitor ODQ, suggesting activation of sGC by CO early in its protective pathway. 

CO-RMs: An i.p. injection of the “fast” CO-releaser CORM-3 (40 mg/kg at 3 and 1 h before 

surgery), inducing maximal blood COHb levels of 2.3% at 10 min after injection, provided 

partial protection against retarded transit by surgery in mice, while the inactive compound  

i-CORM-3 was not effective (De Backer et al., 2009). A similar effect was obtained with 

equimolecular amounts of the “slow” CO releaser CORM-A1 but COHb levels increased to 

8.4% at 20 min after injection. Similar to data obtained with CO in i.p. solution, i.p. 

administration of CORM-3 suppressed muscular leukocyte infiltration at 6 and 24 h after 

surgery, and decreased ERK activation, but it increased MAPK p38 activation. Surgery 

induced a progressive increase in protein expression of HO-1 and in total HO activity; this 

was further enhanced by CORM-3 at 1 to 6 h after surgery in a p38 MAPK dependent way, as 

prevented by a p38 MAPK inhibitor. Finally, the study showed that CORM-3 suppresses the 

progressive increase in muscular oxidative stress levels induced by surgery, illustrating that 

also anti-oxidative effects of CO might contribute to its beneficial effect in POI. In contrast to 

previous studies, De Backer et al., (2009) also investigated the role of the mucosal layer. 

Surgery did not induce pronounced expression of pro-inflammatory cytokines in the mucosa, 

but it led to an early mucosal oxidative stress burst at 1 h after surgery, which might co-

trigger the intestinal epithelial barrier dysfunction during POI (Snoek et al., 2012). CORM-3 

reduced this early mucosal oxidative burst in a fully HO-1-dependent way, as shown with the 
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HO inhibitor chromium mesoporphyrin, while the anti-inflammatory/anti-oxidative effects of 

CORM-3 in the muscularis are only partially HO-1 dependent. 

 

I.3.3.7 Effect of CO on the intestine in sepsis 

In different animal models of sepsis, CO either inhaled as a gas or supplied as CO-RMs 

was shown to increase survival and to decrease inflammation and tissue damage in critical 

organs involved in septic MOF, i.e. lung, liver, heart and kidney (Sarady et al., 2004; Hoetzel 

et al., 2007; Cepinskas et al., 2008; Lancel et al., 2009; Mizuguchi et al., 2009; Lee et al., 

2014). In most studies, CO is applied before or just after administering the septic stimulus, 

which is clinically irrelevant in patients with established sepsis, but a recent study showed 

that inhalation of CO in a therapeutic way (i.e. 2.5 h after starting the LPS infusion) still 

provides some degree of protection (Koulouras et al., 2011). 

Studies concentrating on the effect of CO in the intestine during experimental sepsis 

are summarized in Table I.3. The intestinal readouts involve whole tissue homogenates of 

small intestinal fragments without separation of mucosal or muscular layers. (Liu et al., 

2007) reported that CO inhalation at 250 ppm from 1 to 4 h after intravenous (i.v.) injection 

of LPS in rats ameliorated intestinal injury measured at 4 h after LPS. This corresponded with 

significant suppression of the LPS-induced intestinal cell apoptosis. Although inhalation of 

CO gas induced an increase in arterial COHb levels to 6.9%, no significant differences in the 

partial arterial oxygen pressure and arterial oxygen saturation were observed. Injection of 

LPS increased intestinal HO-1 mRNA expression, which was further augmented following CO 

inhalation. CO inhalation reduced the LPS-induced increase in intestinal ICAM-1 and platelet 

activating factor (PAF) expression as well as leukocyte infiltration and lipid peroxidation so 

that CO might exert its protective effect via anti-inflammatory, anti-oxidative and anti-

apoptotic actions. Similar protective effects were obtained when continuously perfusing 2 

l/min of 250 ppm CO (from CO gas compressed at 250 ppm with balanced air in a cylinder) 

into the peritoneal cavity (through an inlet in the hypogastric right region with an outlet in 

the epigastric left section) from 1 to 7 h after i.v. administration of LPS (Liu et al., 2010a). 

Parameters were measured after 1, 3 and 6 h of CO treatment and illustrated that the 

beneficial effect of CO was maintained for the whole perfusion period. As measured at 3 h 

after LPS challenge, p38 MAPK phosphorylation was increased by LPS and further enhanced 

by CO treatment. The group of Liu et al., (2010b) then also investigated the effect of a single  
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Table I.3 Effects of CO on intestinal tissue integrity and on inflammatory parameters in preclinical 

models of sepsis. 

 

Reference Liu et al., 2007  Liu et al., 2010a Liu et al., 2010b Wang et al., 2012 

  
   

Species Rat Rat Rat Mouse 

  
   

Model 
 

LPS injection 
i.v. 

LPS injection  
i.v. 

LPS injection 
i.v. 

Cecal ligation and 
puncture (CLP) 

  
   

CO source Inhalation 
250 ppm 
from 1 to 4 h 
after LPS 
challenge 
 

Intraperiton. 
perfusion 
2 l/min 
250 ppm CO 
from 1 to 7 h 
after LPS 
challenge 

Intraperiton. 
bolus 
2 ml/kg 
250 ppm CO  
1 h after LPS 
challenge 

i.v. 
CORM-2 
8 mg/kg 
immediately after 
CLP 

 
Blood carboxyhemoglobin 6.9% 7.0% 2.6% - 

  
   

 
LPS        +CO LPS        +CO LPS        +CO CLP        +CO 

Intestinal tissue damage   ↑           ↓   ↑           ↓   ↑           ↓   ↑           = 

Intestinal cell apoptosis   ↑           ↓   ↑           ↓    ↑           ↓            - 

  
   

p38 MAPK phosphorylation           -   ↑           ↑   ↑           ↑           - 

  
   

iNOS protein           -           -           -   ↑           ↓ 

NO production           -           -           -   ↑           ↓  

  
   

ROS   ↑           ↓   ↑           ↓   ↑           ↓   ↑           ↓  

SOD activity           -           -   ↓           ↑           - 

  
   

HO-1 mRNA   ↑           ↑           -           -           - 

  
   

MPO (infiltrating leucocytes)   ↑           ↓   ↑           ↓    ↑           ↓    ↑           ↓ 

  
   

TNF-α protein           -           -           -   ↑           ↓ 

IL-1β protein           -           -           -   ↑           ↓ 

IL-10 protein           -           -   ↓           ↑            - 

  
   

ICAM-1 protein   ↑           ↓    ↑           ↓    ↑           ↓    ↑           ↓ 

  
   

PAF-1 protein   ↑           ↓    ↑           ↓    ↑           ↓            - 

 

-: not determined. 
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i.p. injection of 2 ml/kg of 250 ppm CO, 1 h after LPS treatment. At 1 and 3 h after injection 

of CO, the LPS-changed parameters were beneficially influenced by CO but no longer at 6 h. 

In addition to their previous studies, intestinal levels of SOD activity and IL-10 protein were 

measured; both markers were suppressed by LPS but partially reversed by CO, with IL-10 

being still elevated at 6 h after CO treatment. Although not studying intestinal tissue per se, 

Dal-Secco et al., (2010) confirmed in mice the importance of ICAM-1 for LPS-induced 

neutrophil migration. The increased expression of ICAM-1 on mesenteric venular 

endothelium observed 2 h after intraperitoneal injection with LPS was significantly reduced 

by treating the animals with the CO donor dimanganese decacarbonyl (3 mg/kg 

subcutaneously) 30 min before LPS challenge. The effect of the CO donor was prevented by 

ODQ, illustrating that it depends on sGC activation. Recently, Wang et al., (2012) studied the 

mouse small intestine 24 h after CLP. The intestine showed increased lipid peroxidation, 

leukocyte infiltration (MPO activity), and TNF-α, IL-1β, ICAM-1 and iNOS protein levels, the 

latter corresponding with increased NO production. All these effects were attenuated by 

CORM-2 (8 mg/kg) injected i.v. immediately after the cecal ligation procedure. Histological 

analysis revealed hydropic degeneration and granulocyte infiltration by the septic 

procedure; while CORM-2 decreased granulocyte infiltration, it did not improve the hydropic 

degeneration. 

These studies clearly support the idea that the beneficial effect of CO in sepsis might 

be due, at least in part, to prevention or recovery of intestinal inflammation and tissue 

damage, therefore avoiding the triggering role of the intestine in sepsis. Although none of 

the studies in Tables I.3 measured gut barrier function, it can be expected that the anti-

inflammatory and antioxidant effects of CO in the intestine will also decrease the intestinal 

barrier dysfunction in sepsis. Additionally, the enhancement of host bacterial clearance 

(Chung et al., 2008; Onyiah et al., 2013) and direct bacteriostatic/bactericidal effects by CO 

and CO-RMs (Desmard et al., 2012) might contribute to the beneficial effect in sepsis. 

 

I.3.4 Resveratrol; effects in POI and sepsis 

 

I.3.4.1 Resveratrol 

Human health is greatly affected by environmental factors including bioactive 

molecules found in food. Plants produce a wide spectrum of diverse metabolites that are 
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being investigated for their potential utility in the prevention and treatment of human 

disease. Phytoalexins are one such group of molecules that are produced by plants in 

response to exogenous stressors or pathogen attack and have potent antimicrobial activity 

(Ahuja et al., 2012). Phytoalexins are chemically diverse and show biological activity towards 

a variety of pathogens; they help in disease resistance as plant antibiotics. “Polyphenols” are 

the plant derived chemical products that are characterized by the presence of two or more 

phenolic groups in their structure. They are capable of reducing ROS and thus could serve as 

antioxidants. Many phytoalexin molecules are polyphenolic in nature. The phytoalexins 

produced by Vitis vinifera (grape) and found abundantly in red wines became a popular 

subject of biomedical research following the discovery of the “French Paradox”, an 

observation of low incidence of cardiovascular disease in populations in France that regularly 

consume red wine, in spite of other risk factors including a high-fat diet (Renaud & de 

Lorgeril, 1992). Red wines are a rich source of phytoalexins and polyphenols (Quideau et al., 

2011). Of the many polyphenolic phytoalexins found in red wines, resveratrol (3,4’,5-

trihydroxy-stilbene) is perhaps the most extensively studied to date. Resveratrol exists in 

both cis and trans forms (Fig. I.15). The trans-isomeric form displays greater stability than 

the cis form when protected from high pH and light; hence the beneficial effects so far 

known from the majority of studies are based on investigations with trans-resveratrol (Leiro 

et al., 2004). The concentrations and thus the ratio of cis and trans isomers of resveratrol 

vary in different wines depending upon the variety of grapes used in wine preparation. 

Resveratrol is insoluble in water but soluble in organic solvents like DMSO and ethanol; thus 

a diet high in fat might actually enhance the uptake of lipid-soluble resveratrol to account for 

its beneficial effect reported with the “French Paradox”. Resveratrol is produced by at least 

72 different plant species, some of which are a part of the human diet such as grape skins, 

soy, peanuts and mulberries; these are thus important dietary sources of this polyphenol 

(Soleas et al., 1997). 

In vivo studies using experimental animals (mice, rats and dog models) suggest that 

resveratrol is absorbed satisfactorily in the GI tract, with significant concentrations being 

found in the blood and a number of internal organs (Bertelli et al., 2001). 
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Fig. I.15   Chemical structures of resveratrol isomers showing conversion to cis-resveratrol after the irradiation 

of trans-resveratrol with UV light 

 

I.3.4.2 Mechanisms of action of resveratrol 

As an isolated compound resveratrol has gained attention in both the scientific 

community and general public for its plethora of beneficial effects against 

neurodegenerative disease, cardiovascular disease, obesity, diabetes and cancer, and its 

lifespan extension (Smoliga et al., 2012). These beneficial effects of resveratrol are due to its 

anti-inflammatory, anti-oxidative, anti-proliferative and anti-cancer properties. Resveratrol 

appears to influence the activity of a vast number of enzymes, and the list of downstream 

targets and affected signaling pathways is continuously growing. 

Anti-/pro-oxidant effect of resveratrol: Many of resveratrol’s beneficial effects are 

consistent with a reduction in intracellular oxidative stress. Resveratrol has an inherent 

antioxidant activity related to its chemical structure. At the level of ROS, resveratrol has H2O2 

and OH scavenging activity (Leonard et al., 2003; Ungvari et al., 2007). Moreover, being a 

lipid antioxidant, resveratrol has the ability to prevent lipid peroxidation by scavenging 

peroxyl radicals (ROO where R denotes an organic group) within the membrane (Tadolini et 

al., 2000). Correspondingly, resveratrol has been reported to reduce the copper catalyzed 

oxidation of human low-density lipoprotein (LDL), a crucial step in the pathogenesis of 

atherosclerosis and thus could exert cardioprotection (Frankel et al., 1993). Resveratrol was 

also reported to decrease ROS by reducing the NOX expression in murine aortic walls after 

vascular injury (Sarr et al., 2006; Vecchione et al., 2009) and NOX activity in angiotensin II or 

oxidized LDL-treated cultured human endothelial cells (Chow et al., 2007). One advantage of 

resveratrol as compared to other polyphenols is that this compound does not chelate iron, 

hence it does not affect iron absorption (Brune et al., 1989). However, resveratrol has a 

potential to chelate copper (Belguendouz et al., 1997). 
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Polyphenols, in general, can act either as anti- or pro-oxidants, i.e. inhibitors or 

enhancers of oxidative and radical chain processes (Halliwell, 2008). Besides the redox 

potential of the polyphenol, whether an anti- or a pro-oxidant effect predominates, depends 

on the abundance of metal ions sustaining a redox cycle (Fe2+/Fe3+, Cu+/Cu2+) and/or of 

oxidizing enzymes, the ion-chelating properties of the molecule, pH, the concentration of the 

polyphenol, and the subcellular compartment (Babich et al., 2011). Being a polyphenol, 

resveratrol also exhibits some pro-oxidant activities under certain conditions. E.g. in the 

presence of Cu2+, resveratrol was shown to catalyze the reduction of Cu2+ to Cu+ with the 

resulting oxidized resveratrol products exhibiting pro-oxidative behavior (Ahmad et al., 

2000). 

Resveratrol also decreases oxidative stress by activating the molecular pathways to 

increase the level and activity of cellular antioxidant enzymes (Kovacic & Somanathan, 

2010). In cultured human lung fibroblasts treated with micromolar concentrations of 

resveratrol for 48 h or two weeks, a significant increase in MnSOD protein level and activity 

is observed, an effect that reaches nearly 5-fold at the two week time point (Robb et al., 

2008a). This increase in MnSOD is accompanied by a slight increase in the activity of Gpx, but 

is not accompanied by a general increase in antioxidant enzyme activity, as Cu/Zn SOD and 

catalase activity are unaffected by resveratrol. The observation of increase in MnSOD 

protein level and activity by resveratrol was subsequently reported in murine skeletal muscle 

(Ryan et al., 2010), murine neuronal (Fukui et al., 2010; Kairisalo et al., 2011) and human 

coronary endothelial (Ungvari et al., 2009) cells. These reports suggest that increase in 

MnSOD is a common mechanism of antioxidant activity by resveratrol. Resveratrol also 

increases the expression of detoxification enzymes like NAD(P)H: quinone oxidoreductase 

(Rubiolo et al., 2008) and of Nrf2, which ultimately leads to upregulation of HO-1 (Chen et 

al., 2005). Additionally, resveratrol can also increase mitochondrial biogenesis (Csiszar et al., 

2009). 

Activation of sirtuins: The biological activities of resveratrol have been hypothesized to arise 

from its interaction with numerous substrates; sirtuins attracted most attention. Sirtuins are 

a family of highly conserved protein deacetylase enzymes named after the founding 

member, the Saccharomyces cerevisiae silent information regulator 2 (Sir2) protein. In yeast, 

Sir2 was identified as a putative longevity protein following an observation that its 

overexpression extends lifespan in Caenorhabditis elegans (Tissenbaum & Guarente, 2001). 
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Mammalian silent mating type information regulator 2 homolog 1 (SIRT1) is closely related 

to the C. elegans protein Sir2. Resveratrol has been identified to be a potent activator of 

SIRT1 and hence is implicated in increasing lifespan (Howitz et al., 2003) SIRT1 being a key 

regulator of cellular defenses and cell survival in response to stress. Resveratrol attenuates 

mitochondrial ROS production via a pathway that involves the activation of SIRT1 and the 

upregulation of antioxidant defense mechanisms (Ungvari et al., 2009). Activating SIRT1 has 

been proposed to be a possible strategy of resveratrol to inhibit NF-κB and/or activator 

protein (AP)-1 signaling pathways during inflammation and oxidative stress, respectively 

(Chung et al., 2010). 

Estrogen like effects of resveratrol: Resveratrol is capable of binding to estrogen receptors 

to stimulate transcriptional responses (Gehm et al., 1997). Moreover, resveratrol can act as 

a phytoestrogen, plant derived compounds that mimic the activity of 17-β-estradiol (E2), the 

primary female sex hormone. Owing to these facts, there is remarkable overlap between the 

health effects of resveratrol and those of estrogen. Similar to resveratrol, estrogen is 

neuroprotective, and prevents neurodegeneration in models of Parkinson’s disease, 

Alzheimer’s disease and ischemia reperfusion (Wise et al., 2001; Brinton, 2008; Robb & 

Stuart, 2010). Similarly, resveratrol and estrogen both have beneficial effects on metabolism 

and cardioprotection (Nikolic et al., 2007; Wu & Hsieh, 2011; Faulds et al., 2012; Voloshyna 

et al., 2012). Although resveratrol does not dramatically affect reproductive physiology, 

many of its in vivo effects, such as its positive effects on bone health in ovariectomized 

rodents, are very similar to observations made with estrogen treatment (Lin et al., 2005). 

Resveratrol stimulates the transcription of an estrogen controlled luciferase reporter gene in 

a dose-dependent manner in a human breast cancer cell line (MCF-7). Estrogen antagonists 

inhibit the activation of the reporter gene by resveratrol, and in a competition assay 

resveratrol successfully prevented the binding of radiolabeled estradiol to estrogen 

receptors, demonstrating that resveratrol is an estrogen receptor agonist in vitro (Gehm et 

al., 1997). Resveratrol is an agonist for both estrogen receptor-α and estrogen receptor-β 

(Bowers et al., 2000). Interestingly, both mitochondria and MnSOD are major downstream 

targets of E2 signaling (Borras et al., 2005) and it is plausible that resveratrol could exert its 

effect at the mitochondrial level through E2 signaling. 

Inhibition of NF-kB: The exact mechanisms through which resveratrol exerts anti-

inflammatory effects remain unclear, but mounting evidence supports that resveratrol 
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seems to affect a wide range of inflammatory parameters. NF-κB is likely to be the major 

molecular target for the anti-inflammatory effects of resveratrol. The presence of resveratrol 

prevented the activation of NF-κB triggered by exposure of varied cell types (myeloid, 

lymphoid and epithelial) to diverse inflammatory triggers like TNF-α, phorbol 12-myristate 

13-acetate (PMA), H2O2, LPS, okadaic acid and ceramide (Manna et al., 2000b). Thus, 

treatment with resveratrol suppressed NF-κB-regulated gene products involved in 

inflammation like TNF-α, IL-6, IL-1β, IL-8, COX-2, iNOS, etc (Csaki et al., 2009). Still, activation 

of NF-κB by resveratrol has also been reported in IECs (see section 1.4.2). 

 

I.3.4.3 Administration of resveratrol as therapeutic agent 

In animal studies investigating the beneficial effects of resveratrol, it has been 

administered by i.v., i.p., and oral routes (Shigematsu et al., 2003; Alfaras et al., 2010; 

Larrosa et al., 2011; Petrat & de Groot, 2011). For a substance present in the human diet 

obviously one thinks of oral administration in humans. The bioavailability and 

pharmacokinetics of resveratrol have been studied in experimental animals and humans. 

Resveratrol supplementation has been demonstrated to be safe for humans based on a 

phase I study where healthy volunteers were provided with up to 5 g of resveratrol orally, 

with no major adverse events (Boocock et al., 2007). An enterohepatic cycle has been 

proposed for resveratrol in both rats and humans. Upon oral administration, resveratrol is 

rapidly metabolized by extensive first-pass glucuronidation and sulfation both in the 

intestine by IECs and in the liver; the metabolized forms then circulate to other organs 

(Goldberg et al., 1995; Bertelli et al., 2001; Soleas et al., 2001; Vitrac et al., 2003; Yu et al., 

2009). The glucuronide and sulfate conjugates are also secreted back to the intestine where 

they may be deconjugated and the resulting resveratrol reabsorbed, or excreted in the feces 

(Marier et al., 2002; Walle et al., 2004). Thus, the enterohepatic cycle, along with rapid 

metabolism in the liver, likely explains the low concentration of unchanged resveratrol in the 

blood stream. Both in humans and rats, unchanged resveratrol reaches a maximum plasma 

concentration of 1.9% within an hour following oral administration of trans-resveratrol 

(Goldberg et al., 2003; Walle et al., 2004; Boocock et al., 2007). In humans, resveratrol 

administered intravenously, avoiding first-pass metabolism, was found to be converted into 

a sulfate conjugate within 30 min (Walle et al., 2004). In the same study, most of the 

resveratrol following a single 25 mg oral dose was recovered in urine as its glucuronide and 
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sulfate conjugated metabolites, with only trace amounts of unchanged resveratrol  

(<5 ng/ml) detected in plasma. Similarly, in rodents also, oral intake of resveratrol in the 

hundreds of milligrams range yields only low nanomolar plasma levels of unmetabolized 

resveratrol (Marier et al., 2002; Teng et al., 2012). These results further underline that most 

of resveratrol taken up orally is eliminated from the body leaving only a small fraction of the 

parent compound. However, the composition of the food matrix can have an impact on the 

bioavailability of ingested resveratrol. Correspondingly, significant improvement in energy 

metabolism and aerobic exercise endurance is observed in mice when resveratrol is added 

to diets with fat contents equal to or greater than 40%, but not when resveratrol is added to 

a standard composition diet (Baur et al., 2006; Lagouge et al., 2006). Similarly, resveratrol 

given in a high-fat diet increases brain antioxidant enzyme activities by approximately 2-fold, 

while the same dose given in a standard mouse diet does not have a significant effect (Robb 

et al., 2008b). 

Given the low bioavailability and extensive metabolism of oral resveratrol, solutions 

are sought to increase the bioavailability of resveratrol in order to achieve in plasma the 

concentrations previously shown to have biological activity in in vitro assays (5-100 µmol/L) 

(Poulsen et al., 2013). New administration strategies are currently under development to 

help bypass metabolic breakdown of resveratrol and increase its bioavailability. Resveratrol-

containing lozenges have been reported to increase buccal absorption of resveratrol (Asensi 

et al., 2002). Nanoparticles and liposomes are investigated as potential carriers of 

resveratrol to improve its bioavailability (Teskac & Kristl, 2010; Santos et al., 2011; Gokce et 

al., 2012). Recently, structural derivatives of resveratrol were shown to have manifold higher 

antioxidant potential than the native molecule; these derivatives could be of benefit to 

achieve effective therapeutic concentration of resveratrol in vivo (He & Yan, 2013). 

 

I.3.4.4 Effect of resveratrol in POI 

In only one study, treatment of rats with resveratrol (10 mg/kg; i.v.) 1 h before 

operation partly reversed the retarded transit induced by gut manipulation; no inflammatory 

parameters were studied (Korolkiewicz et al., 2003). 
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I.3.4.5 Effect of resveratrol on the intestine in sepsis 

In experimental models, resveratrol improved sepsis-induced acute organ injury, like 

lung (Kolgazi et al., 2006) and kidney (Kolgazi et al., 2006; Holthoff et al., 2010), when 

administered either before or shortly after the septic insult. Similarly, in the GI tract, 

resveratrol (100 mg/kg, i.p.) treatment immediately after CLP to induce sepsis in rats 

improved ileal smooth muscle reactivity, as measured by smooth muscle contractile 

response to KCl and carbachol; this was accompanied by suppression of serum TNF-α and  

IL-6 levels (Gacar et al., 2012). Oral administration of rats with resveratrol (50 mg/kg) 

reduced the levels of LPS-induced increase in lipid peroxidation (thiobarbituric acid reactive 

substances; TBARS) in the small intestine and colon (Larrosa et al., 2011). In this study, 

resveratrol was administered orally by gastric probe for 3 days; then followed by i.p. 

injection of LPS with a fourth dose of resveratrol given 45 min after LPS injection. 

Interestingly, the administration of LPS caused a decrease in resveratrol absorption as 

assessed from plasma samples; while both glucuronide and sulfate derivatives were found in 

the resveratrol treated group, LPS-resveratrol treated group showed only glucuronide 

derivative, with a level 15 fold lower than the resveratrol treated group. 

 

I.4 IECs as model to study mucosal injury 

 

Many studies investigating intestinal pathologies using mouse models suggest that 

apoptosis of IECs triggers intestinal inflammation (Nenci et al., 2007; Kajino-Sakamoto et al., 

2008; Roulis et al., 2011). Enterocytes are the most abundant cell type in the intestinal 

epithelial cell layer; however, the cellular and molecular mechanisms regulating the cell 

death of enterocytes and their role in maintenance of mucosal homeostasis are still poorly 

understood. As in vivo studies using experimental animals involve multiple cell components, 

investigations with isolated cells could be a possible alternative to understand how IECs 

could individually respond to various inflammatory and oxidative triggers. However, given 

the low viability of primary IECs after isolation and when grown in culture (Schwerk et al., 

2013), in vitro studies involving immortalized epithelial cell lines are frequently used to 

understand how inflammatory mediators or cells can alter epithelial cell ion transport, 

permeability and barrier defects, triggering inflammation (Sambruy et al., 2001). Human 

colon epithelial cell lines like Caco-2, DLD-1, T84, HT-29, HCA-7, LS174T, HCT-8, and I-407 are 
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often used in scientific investigations. Indeed, the Caco-2 cell line with characteristics of 

enterocyte-like phenotype, forming confluent cell monolayers bearing properties of 

transporting epithelia has been internationally recognized as a gold standard model in many 

pharmaceutical studies to determine intestinal permeability and oral drug uptake (Sambuy 

et al., 2005; Araujo & Sarmento, 2013). However, all the aforementioned cell lines are 

colonic and carcinogenic in origin. IEC lines from rodent origin like IEC-4.1, IEC-6 and IEC-18 

(from rat), and m-ICc12, MODE-K and YAMC (from mouse) have been used as mammalian 

surrogates of non-cancerous nature. They are derived from small intestine (with the 

exception of the murine YAMC cell line). Notably, all the rat derived IEC lines retain many of 

the characteristics of crypt cells (Podolsky, 2000). However, the murine MODE-K cells exhibit 

morphological and phenotypic characteristics of normal enterocytes, including intercellular 

junctions, and expression of cytokeratin and villin (Vidal et al., 1993). The murine m-ICc12 

cell line is derived from the bases of small intestinal villi and hence maintains a crypt 

phenotype (Bens et al., 1996). Thus, the MODE-K cell line represents a suitable model for the 

analysis of IEC function in mucosal immunity (Vidal et al., 1993). Recently, the development 

of three-dimensional (3D) intestinal epithelial organoids (also called “epithelial mini-guts”) 

has been proposed as a possible means of maintaining primary IECs in continuous culture 

(Sato & Clevers, 2013). However, organoid cultures are time-consuming and expensive, 

obviously making them impractical for large-scale analyses (Schwerk et al., 2013). 

TNF-α is a pleiotropic cytokine that has a key role in inflammation induced by 

infection or tissue injury. TNF-α signaling is primarily executed through TNF-α receptor 1 

(TNFR1) which induces direct pro-inflammatory signaling with increased expression of many 

genes that regulate inflammation (without cytotoxicity in many cell types). However, in 

cultured cells (of both normal and cancerous nature), TNF-α can induce cell death upon 

sensitizing the cells by treatment with a protein kinase (staurosporine), transcription 

(actinomycin-D) or translation (cycloheximide; CHX) inhibitor (Beyaert et al., 1993). In such 

sensitized cells, binding of TNF-α to TNFR1 can induce apoptosis or necrosis depending upon 

the availability of death regulatory and execution factors (Jones et al., 2000; Pasparakis & 

Vandenabeele, 2015). The signaling complex formed by TNFR1 activates initiator caspases 

(like caspase-8) which then results in activation of executioner caspases (like caspase-3 and 

caspase-7) to mediate apoptotic cell death (Van Herreweghe et al., 2010). 
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I.4.1 CO in IEC lines 

Publications on the protective effect of CO in IEC lines are summarized in Table I.4. 

The IEC lines studied are from murine, rat and human origin; the rodent cell lines (MODE-Κ, 

YAMC and IEC-6) are derived from non-cancerous GI tissues while the human cell lines 

(Caco-2, HT-29 and DLD-1) are from tumorous tissue sources. TNF-α is also an important 

inflammatory mediator in GI inflammation (Holtmann et al., 2002) explaining why studies so 

far investigating the effect of CO or CO-RMs involved exposing monolayers of IECs to either 

TNF-α alone or in combination with other pro-inflammatory cytokines such as IL-1β and 

interferon (IFN)-γ (cytokine mix). All these studies involve acute measurements where the 

cells were exposed to TNF-α or cytokine mix from 30 min to maximally 24 h followed by 

cellular and transcriptional readouts. 

CO treatment protects against IEC death induced by inflammatory cytokines as 

shown with CO gas in rat IEC-6 cells (Zuckerbraun et al., 2005). With regard to the 

mechanism of its protective effect, none of the studies have investigated the involvement of 

sGC and only the study by Megias et al., (2007) examined a possible contribution of p38 

MAPK. In fact, CORM-2 treatment reduced the cytokine-induced increase in phosphorylation 

of MAPK p38, similar to its effect on ERK 1/2 and JNK 1/2 phosphorylation. This is in contrast 

with many in vivo studies on acute GI inflammation reporting that CO further enhances 

inflammation-induced p38 MAPK phosphorylation (see Tables I.2 and I.3). CO treatment 

reduced the cytokine-induced expression of iNOS at the mRNA or protein level, correlating 

with suppression of nitrite production (Dijkstra et al., 2004; Zuckerbraun et al., 2005; Megias 

et al., 2007). No evidence for a selective effect of CO on iNOS activity as previously reported 

(Sawle et al., 2005) has been obtained. In a study with rat IEC-6 cells, CO also inhibited LPS- 

and/or hypoxia (1% O2)-induced increase in iNOS protein expression which was corroborated 

by the decrease in the transcriptional activation of the iNOS promoter (Zuckerbraun et al., 

2005). The effect of CO on iNOS in IECs might be related to its upstream influence on 

transcription factors involved in inflammation-induced iNOS expression. CORM-2 reduced 

the transcriptional activation of NF-κB triggered by a cytokine mixture with reduction of the 

increased expression of IL-8 in Caco-2 cells (Megias et al., 2007). CORM-2 also inhibited gene 

expression and protein production of keratinocyte chemoattractant (KC), a functionally 

related homologue of IL-8 in humans, along with inhibition of NF-κB transcriptional  
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Table I.4 Effects of CO on IEC lines. 

Cell type 
 
 

Inflammatory 
trigger 
 

CO source 
 

 

Effect of inflammatory 
markers/overall 
outcome 

Reference 
 
 

Human colonic epithelial cell 
line, DLD-1 

CM* 

 

250–400 ppm CO 
 

↓ iNOS mRNA 
expression 

Dijkstra et 
al., 2004 

Rat small intestinal 
epithelial cell line, IEC-6 
 

CM 
 
 

250 ppm CO 
 
 

↓ iNOS protein 
expression 

↓ nitrite production 
Zuckerbraun 
et al., 2005 

 
 

TNF-α plus 
actinomycin-
D 

250 ppm CO 
 

↓ cell death (apoptosis) 
 

 

 

LPS/hypoxia 
 
 
 
 
 

250 ppm CO 
 
 
 
 
 

↓ cell death 
↓ iNOS protein 

expression 
↓ transcriptional 

activation of iNOS 
promoter 

 Human colonic epithelial cell 
line, HT-29 
 

TNF-α 
 
 

CORM-2 (5-20 µM) 
 
 

↓ IL-8 mRNA expression 
↓ ICAM-1 and COX-2 

protein expression 

Lee et al., 
2007 
 

Human colonic epithelial cell 
line, Caco-2 
 
 
 
 
 
 
 
 
 

CM 
 
 
 
 
 
 
 
 
 
 

CORM-2 (50-150 µM) 
 
 
 
 
 
 
 
 
 
 

↓ nitrite production 
↓ iNOS mRNA 

expression 
↓ IL-8 protein 

expression 
↓ transcriptional 

activation of NF-kB 
↓ IκBα phosphorylation 
↓ MAPK (p38, ERK 1/2 

and JNK 1/2) 
phosphorylation 

Megias et 
al., 2007 
 
 
 
 
 
 
 
 
 

Young adult mouse colonic 
epithelial cell line, YAMC 

No trigger** 
 

CORM-2 (1-10 µM) 
 

↑ wound repair of cell 
monolayer 

Uchiyama et 
al., 2010 

Young adult mouse colonic 
epithelial cell line, YAMC 
 

TNF-α 
 
 

CORM-2 (10 µM) 
 
 

↓ KC mRNA expression 
↓ KC production 
↓ NF-kB activity 

Takagi et al., 
2011 
 

 

* CM: cytokine mixture (combination of TNF-α, IL-1β and IFN-γ) 

** No inflammatory trigger is used; central manual scraping of monolayer creating a wound 

 

activation in TNF-α stimulated young adult mouse colonic epithelial cells (Takagi et al., 

2011). CORM-2 also showed beneficial effect on IEC restitution (Uchiyama et al., 2010). 

The anti-inflammatory effects of CO/CO-RMs required HO-1 induction in other 

isolated cell systems such as hepatocytes (Zuckerbraun et al., 2003), macrophages (Sawle et 

al., 2005), microglia (Min et al., 2006) and endothelial cells (Kim et al., 2007); however, 

treatment with CO-RMs does not influence HO-1 protein expression in human Caco-2 cells 

(Megias et al., 2007) and thus no evidence for a positive feedback loop CO/HO-1/CO was 

obtained. 
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In another human colonic epithelial cell line, HT-29, bilirubin per se had a similar 

inhibitory effect as CORM-2 on TNF-α-induced IL-8, ICAM-1 and COX-2 expression, and the 

effect was additive when CORM and bilirubin were incubated together suggesting that 

pharmacological induction of HO-1 might lead to more pronounced beneficial effects than 

exogenous CO (Lee et al., 2007). However, the HO-1 inducer cobalt protoporphyrin 

decreased TNF-α plus actinomycin D-induced apoptotic cell death of IEC-6 cells only to the 

same extent as exogenous CO gas (Zuckerbraun et al., 2005). 

All studies in IEC lines thus support that CO can reduce acute mucosal inflammation 

and damage, and even stimulate IEC restitution. 

 

I.4.2 Resveratrol in IEC lines 

The publications on the protective effect of resveratrol in IEC lines are summarized in 

Table I.5. The first study investigating the effect of resveratrol in human HT-29 cells showed 

that resveratrol tested at the concentrations of 25-50 µM promoted NF-κB activity induced 

by LPS challenge (Jeong et al., 2004). Subsequently, resveratrol at 50 µM concentration was 

reported to increase NF-κB activity in Caco-2 cells treated with different inflammatory 

agents like LPS, IL-1β or TNF-α; moreover, resveratrol also increased IL-8 production after  

IL-1β stimulation in the same cell system (Romier et al., 2008). These results together 

suggest that resveratrol promoted NF-κB activation after inflammatory stimuli in human 

colonic epithelial cells; however, this is in sharp contrast to the inhibition of NF-κB activity 

observed with resveratrol in non-intestinal cell types like human monocytes (THP-1), 

macrophages (U-937), lymphoid (Jurkat), hepatic (HeLa) and glioma (H4) cells (Holmes-

McNary & Baldwin, 2000; Manna et al., 2000a; Csiszar et al., 2006). Based on their findings 

with three inflammatory stimuli, Romier et al., speculated that the permanent exposure of 

the intestinal cells to high levels of resveratrol for decades might have modified their genetic 

print, compared with cells present in blood and other organs that are exposed only to small 

levels of resveratrol (Romier et al., 2008). However, the exact mechanisms for the ability of 

resveratrol to activate NF-κB in intestinal cells are still not clear. 

Resveratrol decreased the LPS-induced increase in iNOS gene and protein expression, 

nitrite production, and IκBα phosphorylation in Caco-2 and SW480 cell lines (Panaro et al., 

2012). In the same study, resveratrol also decreased the protein expression of TLR4; this is  
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Table I.5 Effects of resveratrol on IEC lines. 

Cell type 
 
 

Inflammatory 
trigger 
 

Concentration of 
resveratrol 

 

Effect of inflammatory 
markers/overall 
outcome 

Reference 
 
 

Human colonic epithelial cell 
line, HT-29 

LPS 
 

25–50 µM 
 

↑ NF-κB activity 
 

Jeong et al., 
2004 

Human colonic epithelial cell 
line, Caco-2 
 
 

LPS, IL-1β or 
TNF-α 
 
IL-1β 

50 µM 
 
 
 

↑ NF-κB activity 
 
 
↑ IL-8 production 

Romier et 
al., 2008 
 
 

Human colonic epithelial cell 
lines, Caco-2 and SW480 
 
 
 
 

LPS 
 
 
 
 
 

30–50 µM 
 
 
 
 
 

↓ iNOS mRNA and 
protein expression 

↓ nitrite production 
↓ IκBα phosphorylation 
↓ TLR-4 protein 

expression 

Panaro et 
al., 2012 
 
 
 
 

Human colonic epithelial cell 
line grown in three 
dimensional culture system, 
Caco-2 spheroids 
 

FAEEs 
 
 
 
 

10 µM 
 
 
 
 

↓ ROS production 
↓ epithelial 

permeability 
↑ ZO-1 and occludin 
protein levels 

Elamin et 
al., 2013 
 
 
 

Human colonic epithelial cell 
line, HT-29 
 
 
 
 
 

CM* 
 
 
 
 
 
 

25 µM 
 
 
 
 
 
 

↓ iNOS mRNA and 
protein expression 

↓ nitrite production 
↓ PGE2 production 
↓ COX-2 mRNA and 

protein expression 
↓ ROS production 

Serra et al., 
2014 
 
 
 
 
 

* CM: cytokine mixture (combination of TNF-α, IL-1α and IFN-γ) 

 

the best studied member of TLR family, which is involved in the recognition of endotoxins or 

bacterial LPS (Triantafilou & Triantafilou, 2005). 

Ingested ethanol can be non-oxidatively metabolized in humans resulting in the 

formation of fatty acid ethyl esters (FAEEs) like ethyl oleate and ethyl palmitate. FAEEs might 

induce intestinal barrier dysfunction. Indeed, they increased epithelial permeability and ROS 

production, accompanied by decrease in zona occludens-1 (ZO-1) and occludin tight junction 

protein levels, in a three-dimensional epithelial cell culture model of Caco-2 cells (Caco-2 

spheroids). Resveratrol partially attenuated all these effects; this was attributed to its 

antioxidant effect (Elamin et al., 2013). In HT-29 cells, resveratrol reduced nitrite and PGE2 

production, gene and protein expression of iNOS and COX-2, and ROS production induced by 

a cytokine mix challenge (Serra et al., 2014). 

All these studies suggest that resveratrol can reduce mucosal inflammation and such 

protect the gut from mucosal damage and epithelial barrier dysfunction. 
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Chapter II   Aims 

 

The IEC layer plays a crucial role in acute GI inflammation. Among the myriad of 

signaling agents, TNF-α is one of the pro-inflammatory cytokines well known to initiate 

inflammation in the GI mucosa (Guy-Grand et al., 1998; Ruemmele et al., 1999). TNF-α is 

known to induce both apoptosis and cell shedding (Piguet et al., 1999) involving TNFR1 

(Roulis et al., 2011), increase gap formation with associated cell loss (Kiesslich et al., 2007), 

and decrease the intestinal permeability barrier (Watson et al., 2009) in mouse models. 

However, TNF-α alone does not induce apoptosis of isolated IEC lines but requires the 

inhibition of protein translation with CHX (Bhattacharya et al., 2003; Pajak et al., 2005). 

HO-1 confers protection against oxidative stress and inflammation in vitro and in vivo 

(Ryter & Choi, 2002). Although the mechanisms of HO-1-dependent cytoprotection remain 

incompletely understood, accumulating evidence has implicated contributory roles for the 

products generated from HO activity in particular CO. HO-1 is upregulated by numerous 

stimuli including oxidative stress and pro-inflammatory cytokines like TNF-α. Recently, the 

water soluble CO-RMs, CORM-3 and CORM-A1 have facilitated examination of the 

therapeutic potential of CO in disease models including GI ones and open prospects for 

practical clinical delivery of CO. 

Oxidative stress has been a common denominator in several acute GI disorders. In a 

previous study in our laboratory, the possible protective effect of CORM-3 on POI was 

studied in a mouse model (De Backer et al., 2009). Surgical manipulation of the small 

intestine induces intestinal dysmotility and retarded GI transit, driven by a muscular 

inflammatory process; TNF-α is one of the early inflammatory mediators involved (Lubbers 

et al., 2009; Schmidt et al., 2012). Already 1 h after intestinal manipulation, both the 

mucosal layer and the muscular layer of the small intestine showed a clear cut increase in 

oxidative stress, the increase in the mucosal layer being most pronounced. In the muscular 

layer, the increase was maintained for 24 h, but in the mucosal layer the increase at 1 h 

formed a peak. CORM-3 clearly reduced the surgery-induced intestinal dysmotility and also 

significantly reduced this oxidative stress. This suggests that oxidative stress through the 

production of ROS in the intestinal wall might contribute to the pathogenesis of POI. These 
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results led to the hypothesis that early oxidative stress in the small intestinal epithelial cell 

layer might lead to cell damage and increased intestinal permeability, contributing to or 

triggering muscular inflammation. In this thesis, in order to further investigate the in vivo 

observation in an in vitro setting, a murine small IEC line MODE-K was selected with TNF-α as 

an inflammatory stimulus. 

Although the expression of HO-1 in most tissues is low, it can be strongly up-

regulated endogenously by a wide variety of stimuli including heme but also non-heme 

stimuli like cytokines, ROS and hypoxia (Pae et al., 2008). A large number of pharmacologic 

compounds have been demonstrated to induce HO-1 and this induction of HO-1 provides 

potent cytoprotective effects (Li et al., 2007). Thus, targeted induction of HO-1 can be used 

as a therapeutic strategy to combat oxidative stress conditions, which may facilitate the 

development of novel drugs. Among the search for naturally occurring HO-1 inducers, 

resveratrol, a plant polyphenol with anti-oxidative and anti-inflammatory effects, has 

recently gained much interest as a potent HO-1 inducer (Son et al., 2013). 

Therefore, the aim of this thesis was to establish an in vitro IEC model to assess  

TNF-α-induced oxidative stress, inflammation and cell death, and to investigate the 

protective effects of CO-RMs and resveratrol versus the TNF-α-induced dysfunction 

concentrating on their anti-oxidative effect. 

In a first project, the murine MODE-K IEC line was established as a model to assess  

TNF-α/CHX-induced oxidative stress and apoptosis, showing parallel occurrence of ROS and 

apoptosis. As in the case of many GI cell lines, our preliminary studies showed that TNF-α 

requires the combination with CHX to initiate apoptosis in MODE-K cells and hence TNF-

α/CHX was selected. The influence of the CO-RMs CORM-A1 and CORM-3, and resveratrol on  

TNF-α/CHX-induced ROS and apoptosis was investigated. In comparison, a series of 

compounds was tested : the HO-1-derived products biliverdin and bilirubin, the NOX 

inhibitors apocynin and diphenylene iodonium (DPI), a mitochondrial targeted water-soluble 

antioxidant Mito-TEMPO, an inhibitor of prolyl hydroxylase dimethyoxallyl glycine (DMOG), 

and nitrite (as sodium nitrite). For CORM-A1, resveratrol, bilirubin and nitrite, the 

contribution of HO-1 induction to their protective effects was examined. These results are 

summarized in chapter III. 

ROS production from NOXs and mitochondria was implicated in TNF-α-induced 

apoptosis of rat small IECs (Jin et al., 2008; Baregamian et al., 2009). However, the sources of 
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TNF-α-induced ROS in mouse small IECs are unknown. Hence, in the second project, we 

investigated the various sources of ROS production during TNF-α/CHX-induced oxidative 

stress in MODE-K cells using pharmacological inhibitors of various ROS-generating systems 

(NOX, ETC complexes and xanthine/xanthine oxidase), ROS scavengers and antioxidants. 

Given the role of mitochondria in ROS production and cell death, the influence of TNF-α/CHX 

on Ψm, mitochondrial function and cellular respiration was also studied. The results are 

summarized in chapter IV. 

Reducing oxidative stress in the GI epithelial cell layer may be a reasonable 

therapeutic approach to treat acute GI diseases. The slow releasing water soluble CO-RM, 

CORM-A1, and resveratrol were the two agents which effectively reduced TNF-α/CHX-

induced oxidative stress and cell death of MODE-K cells suggesting a correlation between the 

antioxidant and cytoprotective effects of these agents (chapter III). The aim of our last 

project was therefore to investigate the influence of CORM-A1 and resveratrol on the 

different sources of TNF-α/CHX-induced ROS production in MODE-K cells in comparison with 

their effect versus H2O2-, rotenone- or antimycin-A-induced ROS-generating systems. The 

influence on TNF-α/CHX-induced changes in Ψm, mitochondrial function and cellular 

respiration was also studied. The results are summarized in chapter V. 
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Chapter III 

TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine 

intestinal epithelial MODE-K cells 

 

III.1 Abstract 

Background. In the mouse postoperative ileus model, we have shown an increase in 

oxidative stress after intestinal manipulation occurring earlier in the mucosa than in the 

muscular layer, which might contribute to epithelial barrier dysfunction. To address these 

findings in vitro, we assessed TNF-α/cycloheximide (CHX)-induced oxidative stress and 

apoptosis in a mouse intestinal epithelial cell line, MODE-K. 

Methods. The influence of heme oxygenase (HO)-1-related products and agents 

known to reduce reactive oxygen species (ROS) production on TNF-α/CHX-induced oxidative 

stress and apoptosis were investigated. MODE-K cells were exposed to different 

concentrations of TNF-α/CHX in the absence/presence of the test agents. Cell viability, 

caspase-3/7 activity, apoptosis, reduced glutathione (GSH) level and intracellular ROS 

production were measured. 

Key results. TNF-α/CHX decreased cell viability, increased caspase-3/7 activity, 

induced apoptosis, reduced the GSH level and increased ROS production in a concentration-

dependent manner in MODE-K cells. All these effects of TNF-α/CHX were partially prevented 

by pretreatment with a carbon monoxide-releasing agent (CORM-A1) and nitrite. The 

antioxidant resveratrol abolished TNF-α/CHX-induced increase in ROS production and 

caspase-3/7 activity, but apoptosis was only partially prevented. MODE-K cells are sensitive 

to TNF-α-induced apoptosis in the presence of CHX, which is associated with increased 

intracellular ROS production and caspase-3/7 activation. The effects were partially mitigated 

by CORM-A1, nitrite and resveratrol. 

Conclusions. Thus, these agents could be of potential use in protecting the epithelial 

barrier against oxidative stress during intestinal ischemia/reperfusion injury. 
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III.2 Introduction 

Sepsis is an infection with a systemic inflammatory response syndrome, that can 

progress to multiple organ failure and septic shock. This complex disorder is triggered by an 

inflammatory cascade initiated by bacteria-derived molecules such as endotoxin, with 

subsequent formation of endogenous inflammatory cytokines such as tumor necrosis factor 

(TNF)-α, leading to ischemia/reperfusion, mitochondrial dysfunction and apoptosis (Cinel & 

Opal, 2009). The gut is a triggering factor in the progression of sepsis (Hassoun et al., 2001a). 

Severe stress caused by conditions such as major trauma, burns, hemorrhagia and major 

surgery leads to intestinal ischemia/reperfusion and local production of pro-inflammatory 

cytokines, that contribute to the systemic inflammation. In addition, ischemia/reperfusion 

causes disturbance of the intestinal epithelial barrier and bacterial translocation (Balzan et 

al., 2007), which is facilitated by impairment of bowel motility (ileus) (Hassoun et al., 2001b). 

The mechanism of sepsis-induced ileus, assessed by injecting endotoxins in animal models, 

shows similarity to postoperative ileus occurring after abdominal surgery, as endotoxin 

exposure or intestinal manipulation results in activation of the resident macrophages in the 

intestinal muscle, leading to production of pro-inflammatory cytokines such as TNF-α, 

chemokines and adhesion molecules. The latter are essential for further recruitment of 

circulatory leukocytes into the intestinal muscularis (De Winter & De Man, 2010). The 

mucosal layer seems a victim rather than an instigator in the pathogenesis of ileus. 

Notably, in a mouse model of postoperative ileus we recently reported an early and 

transient increase in oxidative stress in the mucosal layer, with a peak value at 1 h after 

intestinal manipulation, preceding the peak in the muscularis (De Backer et al., 2009). The 

combination of oxidative stress-induced epithelial cell damage, increased intestinal 

permeability and translocation of intraluminal endotoxins might trigger the muscular 

inflammation (Anup et al., 1999); TNF-α may play a role in this epithelial distress. When 

combined with the protein synthesis inhibitor cycloheximide (CHX), TNF-α was shown to 

initiate apoptosis in isolated gastrointestinal epithelial cells (Bhattacharya et al., 2003; Pajak 

et al., 2005). Moreover, TNF-α/CHX-induced oxidative stress has been implicated in 

intestinal epithelial cell apoptosis (Jin et al., 2008). To our knowledge, no in vitro study has 

yet fully explored TNF-α/CHX-induced apoptosis in a murine epithelial cell line. The murine 

intestinal epithelial cell line MODE-K is an undifferentiated cell line, which has the advantage 
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of not being derived from tumor tissue, but from the duodenum-jejunum from normal 

young mice. Hence, it is considered to be an important model exhibiting phenotypic and 

functional properties of normal mouse enterocytes (Gopal et al., 2008; Hoffmann et al., 

2011). The first aim of our present study was to investigate the relationship between 

oxidative stress and apoptosis by TNF-α/CHX in MODE-K cells. 

Heme oxygenase (HO) is an ubiquitous rate limiting enzyme that catabolizes heme 

into ferrous iron, carbon monoxide (CO) and biliverdin, which is subsequently reduced to 

bilirubin. The stress inducible isoform HO-1, which is upregulated by numerous stimuli 

including oxidative stress and pro-inflammatory cytokines (Abraham & Kappas, 2005), serves 

as a cytoprotective gene by virtue of its potent antioxidant, anti-apoptotic and anti-

inflammatory properties (Ryter et al., 2007). Biliverdin and its end product bilirubin are 

potent antioxidants and were shown to have cytoprotective effects (Ryter et al., 2006; Ryter 

& Choi, 2009). Accumulating evidence indicates that also CO can mediate many of the 

biological functions of HO-1 (Ryter et al., 2006). Accordingly, CO-releasing molecules  

(CO-RMs) have been developed to deliver CO in a controllable manner under physiological 

conditions providing an advantage of reduced risk of systemic toxicity (Alberto & Motterlini, 

2007; Motterlini, 2007; Motterlini & Otterbein, 2010). The water soluble CO-RMs (CORM-3 

and CORM-A1) (Clark et al., 2003; Motterlini et al., 2005) have gained increasing interest 

recently due to their promising pharmacological properties as carriers of therapeutic doses 

of CO in models of disease including gastrointestinal disorders (Megias et al., 2007; Sun et 

al., 2007). Indeed, in a murine model of postoperative ileus, we have shown that the “fast” 

CO releaser CORM-3 markedly reduced the manipulation-induced inflammation of the 

muscularis and improved surgically induced intestinal dysmotility. This was accompanied by 

reduction of the early oxidative burst in the mucosa (De Backer et al., 2009). The second aim 

of our present study was therefore to investigate the influence of HO-1-related products 

(bilirubin, biliverdin and CO-RMs) on the oxidative/apoptotic response of the MODE-K cell 

line to TNF-α/CHX. For comparison, several agents that are known to reduce the excessive 

production of reactive oxygen species (ROS) were also tested: apocynin and diphenylene 

iodonium (DPI), which can inhibit nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase activity; nitrite, that can inhibit mitochondrial ROS production (Shiva et al., 2007); 

Mito-TEMPO, a mitochondria-targeted antioxidant; and dimethyloxallyl glycine (DMOG), a 

prolyl hydroxylase inhibitor, that attenuates hypoxia-induced intestinal mucosal 
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inflammation (Morote-Garcia et al., 2009) and decreases hypoxia-induced ROS production in 

a human synovial cell line (Biniecka et al., 2011). Finally, resveratrol, a cytoprotective 

bioactive polyphenol present in red wine, was tested given its potential to attenuate 

intestinal ischemia/reperfusion injury (Ozkan et al., 2009) and its HO-1 related 

neuroprotective action against stroke (Sakata et al., 2010). 

 

III.3 Materials and methods 

III.3.1 Chemicals and reagents 

Bilirubin, biliverdin (biliverdin IX hydrochloride) and cobalt protoporphyrin IX (CoPP) 

were purchased from Frontier Scientific Europe Ltd. (Carnforth, UK). 2-(2,2,6,6-

tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl triphenylphosphonium chloride 

monohydrate (Mito-TEMPO) was purchased from Enzo Life Sciences. Apocynin, 

cycloheximide, DMOG, dimethyl sulfoxide (DMSO), DPI, nitrite (as sodium nitrite), propidium 

iodide (PI), resveratrol and ribonuclease-A were obtained from Sigma (St. Louis, MO, USA). 

Recombinant murine TNF-α was purchased from R&D system (Minneapolis, MN, USA). Fetal 

bovine serum, Dulbecco’s modified Eagle’s medium (DMEM), penicillin/streptomycin, and 

glutamax were obtained from Gibco BRL (Grand Island, NY, USA). All other chemicals were 

reagent grade and obtained from Sigma unless otherwise stated. 

III.3.2 Cell culture 

The mouse small intestinal epithelial cell (IEC) line, MODE-K (a generous gift from Dr. 

Ingo B. Autenrieth, University of Tübingen, Germany) was used in our study. These are small 

IECs from C3H/HeJ mice immortalized by simian virus (SV)-40 large T gene transfer, 

exhibiting morphological and phenotypic characteristics of normal enterocytes (Vidal et al., 

1993). MODE-K cells (passage 10–35) were cultured in high-glucose DMEM supplemented 

with 10% fetal bovine serum, 2 mM L-glutamine, and 5% penicillin/streptomycin. Cultures 

were maintained in a humidified 5% CO2 atmosphere at 37°C and experiments were 

conducted on cells at approximately 80-90% confluence. MODE-K cells were seeded at either 

3.5 x 105 cells per 2 ml of culture medium containing 10% serum in a six-well plate (for 

apoptosis assay) or at 1 x 104 cells per 200 µl of culture medium in a 96-well microtiter plate 
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(for all other assays), grown for 36 h and then serum starved overnight. On day 3, cells were 

treated with various concentrations of TNF-α/CHX for 0-6 h. Test drugs were pre-incubated 

for 1 h followed by co-incubation of drugs with various concentrations of TNF-α/CHX for 3-6 

h, with the exception of CoPP that was incubated for 3 h from 24 h till 21 h before exposure 

to TNF-α/CHX. The influence of test drugs alone on cell viability was studied on day 3 by 

incubating MODE-K cells for 12 h. 

III.3.3 Determination of cell viability 

Cell viability was assessed by luminescent cell viability assay with CellTiter-Glo 

(Promega, Madison, WI, USA) according to the manufacturer's protocol. This assay 

determines the number of viable cells in culture based on quantitation of ATP present, an 

indicator of metabolically active cells. Briefly, MODE-Κ cells were plated into 96-well plates 

and treated as described under cell culture. At the end of the incubation period with agents 

on day 3, an equivolume of the luminescent substrate and lysis buffer mix from the assay kit 

was added. The mixture was transferred to an opaque 96-well plate and luminescence was 

recorded using a GloMax Microplate Luminometer (Promega). The index of cellular viability 

was calculated as percentage of luminescence with respect to untreated control cells. 

III.3.4 Measurement of caspase-3/7 activity 

Caspase-3/7 activity was determined using the chemiluminescent Caspase-Glo 3/7 

Assay (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The assay 

provides a luminogenic caspase-3/7 substrate, which contains the tetrapeptide sequence 

DEVD, in a reagent optimized for caspase activity, luciferase activity, and cell lysis. Briefly, 

MODE-Κ cells were plated into 96-well plates and treated as described under cell culture. 

After incubation, an equivolume of luminescent caspase-3/7 Glo substrate buffer was then 

added followed by gentle agitation for 30 min. The mixture was transferred to an opaque 96-

well plate and luminescence was recorded using a GloMax Microplate Luminometer 

(Promega). Relative luminescence units were noted and the results are expressed as 

percentage of luminescence with respect to untreated control. 
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III.3.5 Flow cytometry analysis of apoptosis 

Cellular DNA content and apoptosis were analyzed by flow cytometry as described 

previously (Nicoletti et al., 1991). This assays is based on the principle that the apoptotic 

cells with degraded DNA appear as cells with hypodiploid DNA content and are represented 

in so-called "sub-G1" peaks on DNA histograms. Briefly, cells were plated into six-well plates 

and after treatment for the indicated time, the cells were rinsed with PBS, harvested and 

then fixed by the progressive addition of ice-cold 70% ethanol. The fixed cells were washed 

twice with PBS before staining with PI at 100 µg/ml and RNase at 50 µg/ml in PBS for 20 min. 

Cell viability was determined by flow cytometry (FACSCalibur, BD Bioscience, NJ) and 

CellQuest software (Becton Dickinson, San Jose, CA, USA). Cell debris was excluded from 

analysis by appropriate raising of the forward scatter threshold. The percentage of cells that 

had undergone apoptosis was assessed to be the ratio of the fluorescent area smaller than 

the G0-G1 peak to the total area of fluorescence. The average of the results from at least 

three samples for each experimental condition is presented. 

III.3.6 Measurement of intracellular reduced glutathione (GSH) levels 

The intracellular content of reduced glutathione (GSH) was quantified using the 

bioluminescent GSH-Glo Glutathione Assay (Promega, Madison, WI, USA), essentially as 

recommended by the supplier. In brief, MODE-Κ cells were plated into 96-well plates and 

treated with TNF-α/CHX ± test drugs as described above. After incubation, adherent cells 

were directly lysed in 100 μl GSH-Glo lysis and reaction buffer. After addition of 100 μl GSH-

Glo Luciferin detection reagent, the mixture was transferred to an opaque 96-well plate and 

luminescence was detected using a GloMax Microplate Luminometer (Promega). The GSH 

levels of treated cells are expressed as percentage of the value in untreated control cells. 

III.3.7 Measurement of intracellular reactive oxygen species (ROS) generation 

The intracellular ROS level was detected using 5-(and-6)-carboxy-2′,7′-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) (Molecular Probes, Eugene, OR, 

USA) as reported (Wang & Joseph, 1999). Carboxy-H2DCFDA is a cell-permeable indicator for 

ROS that is nonfluorescent until the acetate groups are removed by intracellular esterases 
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and oxidation occurs within the cell. When oxidized by various active oxygen species, it is 

irreversibly converted to the fluorescent form, DCF. The fluorescence generated by DCF is 

proportional to the rate of carboxy-H2DCFDA oxidation, which is in turn indicative of the 

cellular oxidizing activity and intracellular ROS levels. For ROS measurements, briefly,  

MODE-Κ cells were plated into black 96-well plates and treated as described. Cells were 

washed twice in Hanks’ balanced salt solution (HBSS) and then incubated in HBSS containing 

carboxy-H2DCFDA (10 μM) for 40 min in the dark at 37°C. Fluorescence was measured using 

an excitation of 485 nm and emission of 530 nm, in a fluorescence plate reader (Wallac 

EnVision 2101 multilabel reader, Perkin Elmer, Zaventem, Belgium). Basal ROS generation in 

the cells treated without the stimulus was used as a control. 

III.3.8 Western blotting 

Total cell extracts were prepared using RIPA buffer and protein concentrations were 

measured with the BCA protein assay reagent (Pierce). Equal amounts of protein (20 μg) 

were loaded onto NuPAGE-Novex 4 to 12% Bis-Tris electrophoresis gels (Invitrogen) and 

blotted onto nitrocellulose membranes (GE Healthcare, Little Chalfont, Buckinghamshire, 

UK). Membranes were blocked in Tris-buffered saline/0.1% Tween 20 containing 5% nonfat 

dry milk and incubated overnight with appropriate antibodies for the detection of HO-1 (cat. 

no. sc-10789, 1:1000; Santa Cruz Biotechnology, Santa Cruz, CA) and β-tubulin (cat. no. 

ab6046, 1:1000; Abcam, Cambridge, UK). Horseradish peroxidase-linked secondary 

antibodies (Cell Signaling Technology Inc., Danvers, MA) were visualized by use of Amersham 

ECL Prime Substrate (GE Healthcare Life Sciences). Densitometry of the bands was 

performed using Image J software (National Institutes of Health, Bethesda, MD). 

III.3.9 Statistical analysis 

All data were expressed as mean ± SEM. Comparison of the means was performed 

using the Student’s t-test for two groups of data and ANOVA followed by Bonferroni’s 

multiple comparison test for comparison of more than two groups. Differences were 

considered to be significant at P < 0.05. 
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III.4 Results 

III.4.1 Influence of TNF-α/CHX on cell viability 

The aim of the first set of experiments was to assess the sensitivity of MODE-K cells 

to the cytotoxic effect of TNF-α by testing its influence on cell viability. TNF-α is a cytokine 

inducing apoptosis but many cell lines only undergo apoptosis when TNF-α is combined with 

an agent such as CHX. Previous observations in MODE-K cells showed that TNF-α per se in 

concentrations up to 10 ng/ml and incubated for up to 24 h did not induce cell death 

(Bharhani et al., 2006). We therefore first tested the apoptotic stimulus used in other 

intestinal epithelial cell lines (20 ng/ml TNF-α plus 25 µg/ml CHX) (Bhattacharya et al., 2003; 

Naugler et al., 2008; Greenspon et al., 2009). Incubation of MODE K-cells for 6 h with this 

combination decreased cell viability to 10% of untreated cells, while neither agent alone 

influenced cell viability, the latter corresponding to data with the same concentrations of 

both agents in rat IEC-6 cells (Bhattacharya et al., 2003). As preliminary experiments showed 

that the very pronounced effect of 20 ng/ml TNF-α plus 25 µg/ml CHX on cell viability was 

not influenced by any of the HO-1 related products, lower concentrations of TNF-α were 

investigated, in combination with either 25 or 10 µg/ml CHX, as 10 µg·/ml CHX is also often 

used in combination with TNF-α in cell lines (Johnson & Boise, 1999; Basuroy et al., 2006; 

Birbes et al., 2006). This showed a high sensitivity of MODE-K cells to TNF-α/CHX as 0.1-1 

ng/ml TNF-α together with 10 µg/ml CHX induced a concentration-dependent decrease in 

cell viability (to 54 ± 3% at 0.1 ng/ml and 22 ± 1% at 1 ng/ml TNF-α, Fig. III.1A), the effect 

with 1 ng/ml TNF-α plus 10 µg/ml CHX being close to that of 20 ng/ml TNF-α plus 25 µg/ml 

CHX. The concentration range of 0.1-1 ng/ml TNF-α was therefore studied in the assays for 

caspase-3/7 activity, apoptosis and oxidative stress. 

III.4.2 Influence of TNF-α/CHX on caspase-3/7 activity and apoptotic cell death 

The combination of TNF-α/CHX for 6 h induced an increase in caspase-3/7 activity in a 

concentration-dependent manner (Fig. III.1B). TNF-α (0.1 ng/ml) plus CHX (10 µg/ml) 

increased caspase-3/7 activity by 3.6 fold when compared to control while TNF-α (1 ng/ml) 

plus CHX (10 µg/ml) increased the caspase-3/7 activity by nearly 5 fold. Concomitantly,  
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Fig. III.1   Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, 
incubated for 6 h, on cell viability (as % of control; A), caspase-3/7 activity (as % of control; B), and apoptosis 
(C). Control cells were incubated with serum free medium alone. Mean ± SEM of six independent experiments. 
*P < 0.05 versus control. D: Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 0-6 h, on apoptosis. 
Mean ± SEM of three independent experiments. *P < 0.05 versus untreated (0 h) control group. 

flow cytometric analysis of PI-stained cells for apoptosis showed that TNF-α induced a 

concentration-dependent apoptotic cell death (Fig. III.1C). In both assays, the result with  

1 ng/ml TNF-α plus 10 µg/ml CHX approached that obtained with 20 ng/ml TNF-α plus  

25 µg/ml CHX studied in comparison. To evaluate the kinetics of TNF-α/CHX-induced 

apoptosis, MODE-K cells were incubated with 1 ng/ml TNF-α plus 10 µg/ml CHX for 0-6 h. 
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Induction of apoptosis began after exposure to TNF-α/CHX for 2 h and increased further in a 

time-dependent manner (Fig. III.1D). 

III.4.3 Influence of TNF-α/CHX on reduced glutathione (GSH) and reactive oxygen species 

(ROS) levels 

As a sequential pathway of “ROS production → caspase-3 activity → apoptosis” has 

been proposed for TNF-α/CHX-induced cell death in rat IEC-6 cells (Jin et al., 2008),  

TNF-α/CHX-induced oxidative stress in MODE-K cells was assessed by measurement of 

intracellular ROS generation and of the classic antioxidant GSH. Incubation of MODE-K cells 

with 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX for 3 h did not influence GSH levels, while 20 

ng/ml TNF-α plus 25 µg/ml CHX significantly decreased the GSH level to 62 ± 2% of untreated 

cells (Fig. III.2A). However, after 6 h of exposure, TNF-α/CHX reduced cellular GSH levels in a 

concentration-dependent manner, with 0.1 and 1 ng/ml TNF-α decreasing GSH levels to 69 ± 

3% and 44 ± 2%, respectively. TNF-α (20 ng/ml) plus CHX (25 µg/ml) added for 6 h decreased 

the GSH level to 21 ± 1%. 

Incubation of cells with TNF-α/CHX for 3 h also induced a concentration-dependent 

increase in ROS production (Fig. III.2B). When co-incubated with 10 µg/ml CHX, 0.1 and  

1 ng/ml TNF-α increased ROS production to 2.73 fold and 4.52 fold, respectively, compared 

to control. A time-course experiment with 1 ng/ml TNF-α plus 10 µg/ml CHX showed an 

increase in ROS production starting at 2 h (Fig. III.2C) illustrating that the increase in ROS 

production paralleled the induction of apoptosis. 

III.4.4 Effects of HO-1 and antioxidant-related products on TNF-α/CHX-induced decrease in 

cell viability 

To determine the highest concentration of the HO-1 and antioxidant-related products 

that was not cytotoxic per se, MODE-K cells were incubated with increasing concentrations 

of each compound for 12 h (n = 3 for each compound, data not shown). This concentration 

was then tested on the decrease in cell viability by 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX to 

screen for the protective effects versus the cytotoxic action of TNF-α/CHX. 
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Fig. III.2   Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, 
incubated for 3 h (A, B) or 6 h (A), on cellular glutathione (GSH; as % of control; A) and intracellular ROS levels 
(B). Control cells were incubated with serum free medium alone. Mean ± SEM of six (A) or two (B) independent 
experiments. #P < 0.05 versus control (for 3 h). *P < 0.05 versus control (for 6 h). C: Influence of 1 ng/ml TNF-α 
plus 10 µg/ml CHX, incubated for 0-3 h, on intracellular ROS levels. Mean ± SEM of two independent 
experiments. *P < 0.05 versus untreated (0 h) control group. 

As for the HO-1 related products, 100 µM of bilirubin and 3 µM of biliverdin did not 

influence TNF-α/CHX-induced decrease in cell viability (data not shown), but 1 µM of 

bilirubin partially protected against 0.1 and 0.25 ng/ml TNF-α/CHX (Fig. III.3A). CORM-A1 

(100 µM) and CORM-3 (100 µM) induced significant partial protection from cell death at all 

concentrations of TNF-α/CHX tested (Fig. III.3B and C). The most effective CORM (CORM-A1) 

and the low concentration of bilirubin were selected for further study. 

With regard to the antioxidant-related products, apocynin (250 µM), Mito-TEMPO  

(1 µM) and DMOG (500 µM) did not influence the decrease in cell viability by TNF-α/CHX 

(data not shown). However, DPI (100 µM) showed prevention from TNF-α-induced 
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cytotoxicity at 0.1-0.5 ng/ml TNF-α/CHX, while nitrite (10 mM) showed cytoprotection at all 

tested concentrations of TNF-α/CHX (Fig. III.3D and E). The most effective agent was 

resveratrol (75 µM), which completely prevented cell death by 0.1 ng/ml TNF-α/CHX and 

restored cell viability in the presence of 1 ng/ml TNF-α/CHX from 22 ± 1% to 65 ± 3% (Fig. 

III.3F). On the basis of these results, nitrite (10 mM) and resveratrol (75 µM) were selected 

to further examine the relation between their influence on TNF-α/CHX-induced oxidative 

stress and on TNF-α/CHX-induced apoptosis. 

III.4.5 Effects of bilirubin, CORM-A1, nitrite and resveratrol on TNF-α/CHX-induced changes 

in caspase-3/7 activity and apoptosis 

Treatment with 1 µM bilirubin, 100 µM CORM-A1, 10 mM nitrite or 75 µM 

resveratrol significantly attenuated the TNF-α/CHX-induced increase in caspase-3/7 activity 

at all tested concentrations of TNF-α (Fig. III.4A-D). Among these agents, nitrite and 

resveratrol showed a more pronounced decrease of the induced caspase activities compared 

to bilirubin or CORM-A1. 

The anti-apoptotic effect was tested versus 0.1 and 1 ng/ml TNF-α/CHX. Bilirubin was 

not effective in preventing the apoptotic cell death at both tested TNF-α concentrations, 

while CORM-A1, nitrite and resveratrol partially prevented the apoptotic cell death induced 

by the two tested concentrations of stimulus (Fig. III.5A-D). The results with bilirubin 

illustrate that inhibition of TNF-α/CHX-induced caspase-3/7 activity does not necessarily 

result in a reduction of TNF-α/CHX-induced apoptosis. 

III.4.6 Effects of bilirubin, CORM-A1, nitrite and resveratrol on TNF-α/CHX-induced changes 

in GSH levels and ROS production 

The effect of the various agents on cellular levels of GSH were measured in the presence of 

TNF-α/CHX for 6 h. TNF-α (0.1-1 ng/ml) plus CHX significantly reduced cellular GSH levels 

while pretreatment with 1 µM bilirubin, 100 µM CORM-A1, 10 mM nitrite or 75 µM 

resveratrol partially prevented this effect (Fig. III.6A-D). We next investigated whether any of 

these agents could suppress TNF-α/CHX-induced ROS production by direct measurement of 

carboxy-H2DCFDA-derived fluorescence. TNF-α (1 ng/ml) plus CHX increased the ROS  
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Fig. III.4   Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on caspase-3/7 activity (as % of 
control) in the absence and presence of 1 µM bilirubin (BR, A), 100 µM CORM-A1 (B), 10 mM nitrite (Nit, C) or 
75 µM resveratrol (Res, D). Control cells were incubated with serum free medium alone. Mean ± SEM of six 
independent experiments. *P < 0.05 versus control. #P < 0.05 versus corresponding group with TNF-α/CHX 
alone. 

 

 
Fig. III.3   Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on cell viability (as % of control) 
in the absence and presence of 1 µM bilirubin (BR, A), 100 µM CORM-A1 (B), 100 µM CORM-3 (C), 100 µM 
diphenylene iodonium (DPI, D), 10 mM nitrite (Nit, E) or 75 µM resveratrol (Res, F). Control cells were 
incubated with serum free medium alone. Mean ± SEM of six independent experiments. *P < 0.05 versus 
control. #P < 0.05 versus corresponding group with TNF-α/CHX alone. 
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production by 4.63 fold compared to control, which was reduced to 3.51 fold by bilirubin, 

2.93 fold by CORM-A1, and 3.57 fold by nitrite (Fig. III.7). On the other hand, resveratrol 

completely abolished the TNF-α/CHX-induced increase in ROS production. The results with 

CORM-A1, nitrite and resveratrol suggest that inhibition of TNF-α/CHX-induced ROS 

production can contribute to the anti-apoptotic effects of these compounds in MODE-K cells. 

III.4.7 Effects of bilirubin, CORM-A1, nitrite and resveratrol on TNF-α/CHX-induced changes 

in HO-1 protein expression 

As induction of the expression of endogenous HO-1 has been suggested to contribute to the 

cytoprotective effects of CO-RMs and resveratrol (Kim et al., 2007; Sakata et al., 2010), the 

expression of HO-1 was assessed by Western blotting. In MODE-K cells, the baseline HO-1 

protein level was significantly decreased by 1 ng/ml TNF-α/CHX (Fig. III.8). The HO-1 inducer 

CoPP (10 µM) (Tsoyi et al., 2009), used as a positive control, increased HO-1 expression 

markedly both in the absence and presence of TNF-α/CHX. Treatment with 1 µM bilirubin, 

100 µM CORM-A1 or 10 mM nitrite did not affect basal HO-1 expression; in co-presence with 

TNF-α/CHX, the HO-1 level was not significantly different from that with TNF-α/CHX alone. 

Notably, 75 µM resveratrol per se induced HO-1 expression significantly to 1.63 fold as 

compared to the basal level. However, pretreatment of 75 µM resveratrol did not prevent 

the TNF-α/CHX-induced decrease in HO-1 protein expression. The results illustrate that HO-1 

expression does not contribute to the cytoprotective effect of CORM-A1, nitrite and 

resveratrol in MODE-K cells. 

III.5 Discussion 

The aim of this study was 1) to investigate the oxidative and apoptotic effects of  

TNF-α/CHX in the murine MODE-K epithelial cell line and 2) to evaluate the influence of HO-1 

and antioxidant-related products on the oxidative/apoptotic response to TNF-α/CHX in 

MODE-K cells. 
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Fig. III.5   Influence of 0.1 and 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on apoptosis in the absence 
and presence of 1 µM bilirubin (BR, A), 100 µM CORM-A1 (B), 10 mM nitrite (Nit, C) or 75 µM resveratrol (Res, 
D). Control cells were incubated with serum free medium alone. Mean ± SEM of three independent 
experiments. *P < 0.05 versus control. #P < 0.05 versus corresponding group with TNF-α/CHX alone. 

III.5.1 Induction of oxidative stress and cell death in MODE-K cells by TNF-α 

The study showed that the MODE-K IEC line is highly sensitive to the cytotoxic effects of  

TNF-α with CHX, 0.1 ng/ml TNF-α plus 10 µg/ml CHX halving cell viability and 1 ng/ml TNF-α  
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Fig. III.6   Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on cellular glutathione (GSH; as 
% of control) in the absence and presence of 1 µM bilirubin (BR, A), 100 µM CORM-A1 (B), 10 mM nitrite (Nit, 
C) or 75 µM resveratrol (Res, D). Control cells were incubated with serum free medium alone. Mean ± SEM of 
six independent experiments. *P < 0.05 versus control. #P < 0.05 versus corresponding group with TNF-α/CHX 
alone. 

plus 10 µg/ml CHX reducing cell viability to values close to that by 20 ng/ml TNF-α plus 25 

µg/ml CHX. The concentration range 0.1-1 ng/ml corresponds to TNF-α concentrations 

observed in mice under pathophysiological conditions of sepsis or postoperative ileus. After 

injection of endotoxin, circulatory peak levels of 0.78 and 2.11 ng/ml TNF-α have been 

reported (Copeland et al., 2005; Königsrainer et al., 2011); in mesenteric lymph derived from 

the gastrointestinal tract, still higher and more sustained TNF-α levels of approximately 3 

ng/ml were observed (Königsrainer et al., 2011). After intestinal manipulation, a TNF-α level  
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Fig. III.7   Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 3 h, on intracellular ROS levels (as 
measured by DCF fluorescence) in the absence and presence of 1 µM bilirubin (BR), 100 µM CORM-A1, 10 mM 
nitrite (Nit) or 75 µM resveratrol (Res). Control cells were incubated with serum free medium alone. Mean ± 
SEM of four independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml 
CHX alone. 

of 0.08 ng/ml was obtained in peritoneal lavage fluid (Lubbers et al., 2009) and of 2 

ng/ml/mg in the supernatant of exteriorized and cultured muscularis layer (Schmidt et al., 

2012). 

TNF-α/CHX-induced apoptosis occurred in parallel with ROS production. TNF-α (0.1-1 

ng/ml) plus CHX treatment for 6 h induced concentration-dependent apoptosis correlating 

with its influence on cell viability. When studying the time-dependency of 1 ng/ml TNF-α, 

apoptosis started from 2 h of TNF-α incubation on, and this corresponded with the 

occurrence of ROS production. The concentration-dependent induction of apoptosis by  

TNF-α at 6 h was accompanied by a corresponding increase in caspase-3/7 activity, so that 

the sequence “ROS production → caspase-3/7 activity → apoptosis” as reported in rat IEC-6  
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Fig. III.8   Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 3 h, on HO-1 protein expression (relative 
to β-tubulin) in the absence and presence of 10 µM cobalt protoporphyrin (CoPP), 100 µM CORM-A1, 1 µM 
bilirubin (BR), 75 µM resveratrol (Res) or 10 mM nitrite (Nit). Control cells were incubated with serum free 
medium alone. The influence of 20 ng/ml TNF-α plus 25 µg/ml CHX and DMSO, the solvent of Res was also 
studied. Mean ± SEM of three independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng·mL-1 
TNF-α/10 µg·mL-1 CHX alone. Representative immunoblots are shown at the top of the figure. 

cells (Jin et al., 2008) might also occur in MODE-K cells. The concentration-dependent 

induction of ROS by TNF-α at 3 h was not paralleled by a decrease in GSH, which only 

occurred at 6 h. GSH is a potent intracellular antioxidant that attenuates oxidative stress, 

while cytochrome c is a protein located in the mitochondrial intermembrane space which 

becomes pro-apoptotic when triggered by increased and sustained ROS production (Yang et 

al., 1997). Oxidative stress, due to ROS, can cause depletion of GSH levels in the 

mitochondria leading to the release and oxidation of cytochrome c to the cytosol and 

subsequent caspase activation. Since reduced GSH in mitochondria is the only defense 

provided to metabolize peroxides generated from the electron transport chain through the 

GSH redox cycle (Fernandez-Checa et al., 1998), from our observation, it seems that the 
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production of ROS in the form of peroxides starts at a later time point (after 3 h) during  

TNF-α/CHX exposure, while other forms of ROS (hydroxyl radical and superoxide anion) 

might play a role in earlier apoptosis induction from 2 h of TNF-α/CHX exposure in MODE-K 

cells. 

III.5.2 Influence of HO-1 related products on TNF-α/CHX-induced oxidative stress and 

apoptosis 

At the highest non-cytotoxic concentration used, CORM-3 and more effectively 

CORM-A1 reduced the decrease of cell viability by TNF-α, while 100 µM bilirubin or 3 µM 

biliverdin had no effect. However, at much lower concentration (1 µM), bilirubin has been 

shown to elicit antioxidant effects with significant reduction in ROS production and cell 

proliferation in human airway smooth muscle cells (Taille et al., 2003). At this concentration, 

our studies revealed that bilirubin partially prevented cell death induced by the two lower 

concentrations of TNF-α tested; although partially preventing the 1 ng/ml TNF-α/CHX-

induced increase in ROS production and caspase-3/7 activity, bilirubin failed to show any 

prevention of TNF-α/CHX-induced apoptosis. This is in agreement with a study by Basuroy et 

al. (2006) showing that bilirubin had only a mild effect on TNF-α/CHX-induced apoptosis 

although it reduced caspase-3 expression in a pronounced way. The mild effect of bilirubin 

on TNF-α/CHX-induced ROS-production is thus not sufficient to reduce TNF-α/CHX-induced 

apoptosis; neither is its mild effect on caspase-3/7 activity. The latter can be related to 

caspase-independent pathways of TNF-α-induced apoptosis as TNF-α has been reported to 

also induce caspase-independent cell death in a variety of cells like macrophages (Tran et al., 

2009), neutrophils (Maianski et al., 2003) and, in particular, HT-29 human adenocarcinoma 

cells (Wilson & Browning, 2002). 

The reduction of TNF-α/CHX-induced caspase-3/7 activity by CORM-A1 was also very 

mild, but in contrast to bilirubin, CORM-A1 was able to clearly reduce TNF-α/CHX-induced 

apoptosis. This dissociation can be attributed again to caspase-independent pathways of 

TNF-α-induced apoptosis. The exact mechanism of the anti-apoptotic effect of CORM-A1 in 

MODE-K cells remains to be clarified, but our study shows that its anti-apoptotic effect 

correlates with a reduction in ROS production, which was more pronounced than that 

observed with bilirubin, as well as an increase in GSH levels. Indeed, caspase-independent 
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induction of apoptosis by ROS has been reported in PC12 pheochromocytoma cells so that 

inhibition of ROS production per se can be expected to reduce apoptosis (Yuyama et al., 

2003). The finding that CORM-A1 exerts significant protection against both TNF-α/CHX-

induced oxidative stress and apoptosis supports the notion that CO can mediate the well-

known anti-apoptotic effect of HO-1. 

CO-RMs were shown to induce HO-1 expression in different types of cells (Sawle et 

al., 2005; Lee et al., 2006) and this was suggested to contribute to their anti-apoptotic effect 

(Kim et al., 2007). In thyroid carcinoma cells, HO-1 induction by hemin was shown to protect 

against TNF-α/CHX-induced apoptosis (Chen et al., 2004). In MODE-K cells in the actual 

study, basal HO-1 levels were decreased by 3 h exposure to TNF-α plus the protein synthesis 

inhibitor CHX, although TNF-α alone can reduce endogenous HO-1 expression in some cells 

(Chae et al., 2006). CoPP, a well-known HO-1 inducer as also confirmed in control MODE-K 

cells, still clearly induced HO-1 when cells were also incubated with TNF-α/CHX. However, 

this was not the case with CORM-A1, excluding the possibility that endogenous HO-1 

induction contributes to the anti-apoptotic effect of CORM-A1 in MODE-K cells. 

Correspondingly, exogenous CO protected pancreatic β-cells against TNF-α-induced 

apoptosis even when HO-1 activity was blocked (Gunther et al., 2002). 

III.5.3 Influence of antioxidant related products on TNF-α/CHX-induced oxidative stress and 

apoptosis 

Apocynin is widely used as an NADPH oxidase inhibitor (Stolk et al., 1994) and in 

Caco-2 cells, it was shown to inhibit polychlorinated biphenyls-induced NADPH oxidase 

activation and disruption of epithelial integrity (Choi et al., 2010). However, in the present 

study we found that apocynin did not protect at all MODE-K cells from TNF-α/CHX-induced 

cytotoxicity. This does not discard the possibility that NADPH oxidase is participating to  

TNF-α/CHX-induced ROS production in MODE-K cells since the inhibitory effect of apocynin 

on NADPH oxidase activity has been questioned (Heumüller et al., 2008). Another NADPH 

oxidase inhibitor, DPI (O'Donnell et al., 1993), partially protected MODE-K cells from  

TNF-α/CHX-induced cell death at lower concentrations of TNF-α, but not at 1 ng/ml TNF-α. 

Mitochondrial ROS has also been implicated in TNF-α-induced cytotoxicity (Schulze-

Osthoff et al., 1993). In our study, nitrite but not the mitochondrial-targeted antioxidant 
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Mito-TEMPO influenced TNF-α/CHX-induced decrease in cell viability of MODE-K cells. The 

concentration of nitrite (10 mM) used was shown to provide complete rescue of UVA-

induced apoptotic cell death in rat aortic endothelial cells (Suschek et al., 2003). We also 

found that nitrite reduced TNF-α/CHX-induced caspase-3/7 activation. It had a similar 

influence on TNF-α/CHX-induced ROS production as bilirubin, but in contrast to bilirubin, it 

also reduced TNF-α/CHX-induced apoptosis. In ischemia/reperfusion injury, nitrite has been 

shown to act by decreasing mitochondrial ROS generation through inhibition of complex I 

activity (Shiva et al., 2007). The fluorescent probe, carboxy-H2DCFDA, used in this study as an 

indicator of generalized oxidative stress is not specific for a single type of ROS like H2O2, 

peroxynitrite and peroxides (Possel et al., 1997; Afri et al., 2004). Consequently, this probe 

can detect different ROS types from mitochondria, lipid oxidation and other sources, and the 

similar degree of ROS reduction by nitrite and bilirubin does not necessarily mean that the 

same source of ROS is influenced by both agents. A more important role of mitochondrial 

ROS, rather than ROS from other sources, in the induction of apoptosis, might then explain 

why nitrite, preferentially reducing mitochondrial ROS production, is able to reduce 

apoptosis while bilirubin is not. 

Despite the fact that hydroxylase inhibitor DMOG has been reported to protect 

intestinal epithelial cells against TNF-α-induced apoptosis in vitro (Cummins et al., 2008) and 

to decrease hypoxia-induced ROS production in human synovial cells (Biniecka et al., 2011), 

it failed to prevent TNF-α/CHX-induced cell death in MODE-K cells. Resveratrol, a bioactive 

polyphenol from red wine, has shown cytoprotection in many models related to interaction 

with multiple targets, such as, for example, induction of silent mating type information 

regulator 2 homolog 1 (SIRT-1) (Petrovski et al., 2011). Its attenuating effect on dextran 

sulfate sodium-induced colitis was also related to SIRT-1 induction (Singh et al., 2010). 

Recently, induction of HO-1 was implied in the neuroprotective effect of resveratrol against 

stroke (Sakata et al., 2010). In our study, resveratrol per se increased basal HO-1 protein 

expression in MODE-K cells, but it did not prevent the decrease by TNF-α/CHX excluding  

HO-1 induction as the mechanism of action for its protective effect versus TNF-α/CHX. In 

MODE-K cells, resveratrol was by far the most effective cytoprotective agent as it fully 

abolished TNF-α/CHX-induced ROS production and caspase-3/7 activation; surprisingly, it 

only reduced apoptosis by approximately 50%. This suggests that TNF-α/CHX-induced 

apoptosis of MODE-K cells can occur in a ROS- and caspase-3/7-independent way. 
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In conclusion, these data indicate that mouse intestinal epithelial MODE-K cells are 

highly sensitive to TNF-α-induced apoptosis in the presence of CHX. TNF-α/CHX-induced 

apoptosis was accompanied by increased intracellular ROS generation and caspase-3/7 

activation. CORM-A1, nitrite and most importantly resveratrol attenuated TNF-α/CHX-

induced ROS production, caspase-3/7 activation and apoptosis. These agents might 

therefore be useful to prevent epithelial damage during ischemia/reperfusion injury. 

  



Chapter III 

In vitro model of TNF-α-induced oxidative stress and apoptosis 
 

122 
 

III.6 References 

Abraham NG & Kappas A (2005). Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 39, 
1-25. 

Afri M, Frimer AA, Cohen Y (2004). Active oxygen chemistry within the liposomal bilayer Part IV: Locating 2 ',7 '-
dichlorofluorescein (DCF), 2 ',7 '-dichlorodihydrofluorescein (DCFH) and 2 ',7 '-dichlorodihydrofluorescein 
diacetate (DCFH-DA) in the lipid bilayer. Chemistry and Physics of Lipids 131, 123-133. 

Alberto R & Motterlini R (2007). Chemistry and biological activities of CO-releasing molecules (CORMs) and 
transition metal complexes. Dalton Trans, 1651-1660. 

Anup R, Aparna V, Pulimood A, Balasubramanian KA (1999). Surgical stress and the small intestine: role of 
oxygen free radicals. Surgery 125, 560-569. 

Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I (2007). Bacterial translocation: overview 
of mechanisms and clinical impact. J Gastroenterol Hepatol 22, 464-471. 

Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW et al. (2006). HO-2 provides endogenous 
protection against oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am 
J Physiol Cell Physiol 291, C897-908. 

Bharhani MS, Borojevic R, Basak S, Ho E, Zhou P, Croitoru K (2006). IL-10 protects mouse intestinal epithelial 
cells from Fas-induced apoptosis via modulating Fas expression and altering caspase-8 and FLIP expression. Am 
J Physiol Gastrointest Liver Physiol 291, G820-829. 

Bhattacharya S, Ray RM, Viar MJ, Johnson LR (2003). Polyamines are required for activation of c-Jun NH2-
terminal kinase and apoptosis in response to TNF-alpha in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 
285, G980-991. 

Biniecka M, Fox E, Gao W, Ng CT, Veale DJ, Fearon U et al. (2011). Hypoxia induces mitochondrial mutagenesis 
and dysfunction in inflammatory arthritis. Arthritis Rheum 63, 2172-2182. 

Birbes H, Zeiller C, Komati H, Nemoz G, Lagarde M, Prigent AF (2006). Phospholipase D protects ECV304 cells 
against TNFalpha-induced apoptosis. FEBS Lett 580, 6224-6232. 

Chae HJ, Chin HY, Lee GY, Park HR, Yang SK, Chung HT et al. (2006). Carbon monoxide and nitric oxide protect 
against tumor necrosis factor-alpha-induced apoptosis in osteoblasts: HO-1 is necessary to mediate the 
protection. Clinica Chimica Acta 365, 270-278. 

Chen GG, Liu ZM, Vlantis AC, Tse GM, Leung BC, van Hasselt CA (2004). Heme oxygenase-1 protects against 
apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J Cell 
Biochem 92, 1246-1256. 

Choi YJ, Seelbach MJ, Pu H, Eum SY, Chen L, Zhang B et al. (2010). Polychlorinated biphenyls disrupt intestinal 
integrity via NADPH oxidase-induced alterations of tight junction protein expression. Environ Health Perspect 
118, 976-981. 

Cinel I & Opal SM (2009). Molecular biology of inflammation and sepsis: a primer. Crit Care Med 37, 291-304. 

Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE et al. (2003). Cardioprotective actions by a 
water-soluble carbon monoxide-releasing molecule. Circulation Research 93, e2-8. 

Copeland S, Warren HS, Lowry SF, Calvano SE, Remick D, Inflammation et al. (2005). Acute inflammatory 
response to endotoxin in mice and humans. Clin Diagn Lab Immunol 12, 60-67. 



Chapter III 

In vitro model of TNF-α-induced oxidative stress and apoptosis 
 

123 
 

Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG et al. (2008). The hydroxylase inhibitor 
dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156-165. 

De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA (2009). Water-soluble CO-releasing 
molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and 
reduction of oxidative stress. Gut 58, 347-356. 

De Winter BY & De Man JG (2010). Interplay between inflammation, immune system and neuronal pathways: 
Effect on gastrointestinal motility. World Journal of Gastroenterology 16, 5523-5535. 

Fernandez-Checa JC, Garcia-Ruiz C, Colell A, Morales A, Mari M, Miranda M et al. (1998). Oxidative stress: role 
of mitochondria and protection by glutathione. Biofactors 8, 7-11. 

Gopal R, Birdsell D, Monroy FP (2008). Regulation of toll-like receptors in intestinal epithelial cells by stress and 
Toxoplasma gondii infection. Parasite Immunol 30, 563-576. 

Greenspon J, Li RY, Xiao L, Rao JN, Marasa BS, Strauch ED et al. (2009). Sphingosine-1-Phosphate Protects 
Intestinal Epithelial Cells from Apoptosis Through the Akt Signaling Pathway. Digestive Diseases and Sciences 
54, 499-510. 

Gunther L, Berberat PO, Haga M, Brouard S, Smith RN, Soares MP et al. (2002). Carbon monoxide protects 
pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51, 
994-999. 

Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA (2001a). Post-injury multiple organ 
failure: the role of the gut. Shock 15, 1-10. 

Hassoun HT, Weisbrodt NW, Mercer DW, Kozar RA, Moody FG, Moore FA (2001b). Inducible nitric oxide 
synthase mediates gut ischemia/reperfusion-induced ileus only after severe insults. J Surg Res 97, 150-154. 

Heumüller S, Wind S, Barbosa-Sicard E, Schmidt H, Busse R, Schröder K et al. (2008). Apocynin is not an 
inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51, 211-217. 

Hoffmann M, Messlik A, Kim SC, Sartor RB, Haller D (2011). Impact of a probiotic Enterococcus faecalis in a 
gnotobiotic mouse model of experimental colitis. Mol Nutr Food Res 55, 703-713. 

Jin S, Ray RM, Johnson LR (2008). TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells 
requires Rac1-regulated reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 294, G928-937. 

Johnson BW & Boise LH (1999). Bcl-2 and caspase inhibition cooperate to inhibit tumor necrosis factor-alpha-
induced cell death in a Bcl-2 cleavage-independent fashion. J Biol Chem 274, 18552-18558. 

Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT (2007). Carbon monoxide induces heme oxygenase-1 via 
activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis 
triggered by endoplasmic reticulum stress. Circulation Research 101, 919-927. 

Königsrainer I, Türck M, Eisner F, Meile T, Hoffmann J, Küper M et al. (2011). The gut is not only the target but a 
source of inflammatory mediators inhibiting gastrointestinal motility during sepsis. Cell Physiol Biochem. 28, 
753-760. 

Lee BS, Heo J, Kim YM, Shim SM, Pae HO, Kim YM et al. (2006). Carbon monoxide mediates heme oxygenase 1 
induction via Nrf2 activation in hepatoma cells. Biochem Biophys Res Commun 343, 965-972. 

Lubbers T, Luyer MD, de Haan JJ, Hadfoune M, Buurman WA, Greve JW (2009). Lipid-rich enteral nutrition 
reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann Surg 249, 481-487. 



Chapter III 

In vitro model of TNF-α-induced oxidative stress and apoptosis 
 

124 
 

Maianski NA, Roos D, Kuijpers TW (2003). Tumor necrosis factor alpha induces a caspase-independent death 
pathway in human neutrophils. Blood 101, 1987-1995. 

Megias J, Busserolles J, Alcaraz MJ (2007). The carbon monoxide-releasing molecule CORM-2 inhibits the 
inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol 150, 977-986. 

Morote-Garcia JC, Rosenberger P, Nivillac NM, Coe IR, Eltzschig HK (2009). Hypoxia-inducible factor-dependent 
repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. 
Gastroenterology 136, 607-618. 

Motterlini R (2007). Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-
inflammatory activities. Biochem Soc Trans 35, 1142-1146. 

Motterlini R & Otterbein LE (2010). The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9, 728-
743. 

Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R et al. (2005). CORM-A1: a new pharmacologically 
active carbon monoxide-releasing molecule. Faseb Journal 19, 284-286. 

Naugler KM, Baer KA, Ropeleski MJ (2008). Interleukin-11 antagonizes Fas ligand-mediated apoptosis in IEC-18 
intestinal epithelial crypt cells: role of MEK and Akt-dependent signaling. Am J Physiol Gastrointest Liver Physiol 
294, G728-737. 

Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991). A rapid and simple method for measuring 
thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139, 271-279. 

O'Donnell BV, Tew DG, Jones OT, England PJ (1993). Studies on the inhibitory mechanism of iodonium 
compounds with special reference to neutrophil NADPH oxidase. Biochem J 290 ( Pt 1), 41-49. 

Ozkan OV, Yuzbasioglu MF, Ciralik H, Kurutas EB, Yonden Z, Aydin M et al. (2009). Resveratrol, a natural 
antioxidant, attenuates intestinal ischemia/reperfusion injury in rats. Tohoku J Exp Med 218, 251-258. 

Pajak B, Gajkowska B, Orzechowski A (2005). Cycloheximide-mediated sensitization to TNF-alpha-induced 
apoptosis in human colorectal cancer cell line COLO 205; role of FLIP and metabolic inhibitors. J Physiol 
Pharmacol 56 Suppl 3, 101-118. 

Petrovski G, Gurusamy N, Das DK (2011). Resveratrol in cardiovascular health and disease. Resveratrol and 
Health 1215, 22-33. 

Possel H, Noack H, Augustin W, Keilhoff G, Wolf G (1997). 2,7-Dihydrodichlorofluorescein diacetate as a 
fluorescent marker for peroxynitrite formation. FEBS Lett 416, 175-178. 

Ryter SW, Alam J, Choi AM (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic 
applications. Physiol Rev 86, 583-650. 

Ryter SW & Choi AM (2009). Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am 
J Respir Cell Mol Biol 41, 251-260. 

Ryter SW, Kim HP, Nakahira K, Zuckerbraun BS, Morse D, Choi AM (2007). Protective functions of heme 
oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal 9, 2157-2173. 

Sakata Y, Zhuang H, Kwansa H, Koehler RC, Dore S (2010). Resveratrol protects against experimental stroke: 
putative neuroprotective role of heme oxygenase 1. Exp Neurol 224, 325-329. 

Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R (2005). Carbon monoxide-releasing molecules 
(CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine 
macrophages. Br J Pharmacol 145, 800-810. 



Chapter III 

In vitro model of TNF-α-induced oxidative stress and apoptosis 
 

125 
 

Schmidt J, Stoffels B, Chanthaphavong RS, Buchholz BM, Nakao A, Bauer AJ (2012). Differential molecular and 
cellular immune mechanisms of postoperative and LPS-induced ileus in mice and rats. Cytokine 59, 49-58. 

Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993). Depletion of the mitochondrial 
electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12, 3095-3104. 

Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L et al. (2007). Nitrite augments tolerance to 
ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204, 2089-2102. 

Singh UP, Singh NP, Singh B, Hofseth LJ, Price RL, Nagarkatti M et al. (2010). Resveratrol (trans-3,5,4'-
trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear 
transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 
332, 829-839. 

Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ (1994). Characteristics of the inhibition of NADPH oxidase 
activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11, 95-102. 

Sun BW, Jin Q, Sun Y, Sun ZW, Chen X, Chen ZY et al. (2007). Carbon liberated from CO-releasing molecules 
attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 13, 
6183-6190. 

Suschek CV, Schroeder P, Aust O, Sies H, Mahotka C, Horstjann M et al. (2003). The presence of nitrite during 
UVA irradiation protects from apoptosis. FASEB J 17, 2342-2344. 

Taille C, Almolki A, Benhamed M, Zedda C, Megret J, Berger P et al. (2003). Heme oxygenase inhibits human 
airway smooth muscle proliferation via a bilirubin-dependent modulation of ERK1/2 phosphorylation. J Biol 
Chem 278, 27160-27168. 

Tran TM, Temkin V, Shi B, Pagliari L, Daniel S, Ferran C et al. (2009). TNFalpha-induced macrophage death via 
caspase-dependent and independent pathways. Apoptosis 14, 320-332. 

Tsoyi K, Lee TY, Lee YS, Kim HJ, Seo HG, Lee JH et al. (2009). Heme-oxygenase-1 induction and carbon 
monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro 
and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol 
Pharmacol 76, 173-182. 

Vidal K, Grosjean I, evillard JP, Gespach C, Kaiserlian D (1993). Immortalization of mouse intestinal epithelial 
cells by the SV40-large T gene. Phenotypic and immune characterization of the MODE-K cell line. J Immunol 
Methods 166, 63-73. 

Wang H & Joseph JA (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate 
reader. Free Radical Biology and Medicine 27, 612-616. 

Wilson CA & Browning JL (2002). Death of HT29 adenocarcinoma cells induced by TNF family receptor 
activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death and 
Differentiation 9, 1321-1333. 

Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. (1997). Prevention of apoptosis by Bcl-2: release of 
cytochrome c from mitochondria blocked. Science 275, 1129-1132. 

Yuyama K, Yamamoto H, Nishizaki I, Kato T, Sora I, Yamamoto T (2003). Caspase-independent cell death by low 
concentrations of nitric oxide in PC12 cells: involvement of cytochrome C oxidase inhibition and the production 
of reactive oxygen species in mitochondria. J Neurosci Res 73, 351-363. 

 



 



 
 

 

 

 

 

 

 

 

Chapter IV 
 
MITOCHONDRIA AND NADPH OXIDASES ARE THE 
MAJOR SOURCES OF TNF-α/CYCLOHEXIMIDE-
INDUCED OXIDATIVE STRESS IN MURINE INTESTINAL 
EPITHELIAL MODE-K CELLS 
 

Dinesh Babu a, Georges Leclercq b, Vera Goossens c,d, Tom Vanden Berghe c,d, Evelien Van 

Hamme c,d, Peter Vandenabeele c,d, Romain A Lefebvre a 

 

a Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, 

Belgium 

b Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health 

Sciences, Ghent University, Belgium 

c Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium 

d Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent 

University, Ghent, Belgium 

 

 

 

Based on 

Cell Signal. 2015; 27: 1141-1158. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter IV 

Sources of ROS during TNF-α/CHX-induced oxidative stress and apoptosis 
 

129 
 

 

Chapter IV 

Mitochondria and NADPH oxidases are the major sources of 

TNF-α/cycloheximide-induced oxidative stress in murine intestinal epithelial 

MODE-K cells 

 

IV.1  Abstract 

Background. TNF-α/cycloheximide (CHX)-induced apoptosis of the mouse intestinal 

epithelial cell line MODE-K corresponds with the production of reactive oxygen species 

(ROS). The aim of the study is to investigate the sources of ROS production contributing to 

apoptotic cell death during TNF-α/CHX-induced oxidative stress in MODE-K cells. 

Methods. Total ROS or mitochondrial superoxide anion production was measured 

simultaneously with cell death in the absence or presence of pharmacological inhibitors of 

various ROS-producing systems, and of ROS scavengers/antioxidants. The influence of  

TNF-α/CHX on mitochondrial membrane potential (Ψm) and cellular oxygen consumption 

was also studied. 

Key results. TNF-α/CHX time-dependently increased intracellular total ROS and 

mitochondrial superoxide anion production in MODE-K cells, starting from 2 h. Inhibition of 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) by a pan-NOX 

inhibitor (VAS-2870) and a specific inhibitor of Rac1 (NSC23766) significantly reduced  

TNF-α/CHX-induced total ROS and cell death levels. The mitochondrial electron transport 

chain inhibitors, amytal (IQ site of complex I) and TTFA (QP site of complex II) showed a 

pronounced decrease in TNF-α/CHX-induced total ROS, mitochondrial superoxide anion and 

cell death levels. TNF-α/CHX treatment caused an immediate decrease in mitochondrial 

respiration, and a loss of Ψm and increase in mitochondrial dysfunction from 1 h on. 

Conclusions. The results suggest that mitochondria and NOX are the two major 

sources of ROS overproduction during TNF-α/CHX-induced cell death in MODE-K cells, with 

superoxide anions being the major ROS species. Particularly, the quinone-binding sites of 
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mitochondrial complex I (site IQ) and complex II (site QP) seem to be the major sites of 

mitochondrial ROS production. 
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IV.2  Introduction 

Several acute and chronic intestinal inflammatory conditions such as necrotizing 

enterocolitis, postoperative ileus and inflammatory bowel disease (IBD) are accompanied 

with impairment of the intestinal epithelial barrier (Sharma & Tepas, 2010; Snoek et al., 

2012; Pastorelli et al., 2013). Upon the systemic inflammatory reaction during sepsis, 

disruption of the intestinal epithelial barrier can promote the progression towards multiple 

organ failure (Deitch, 2002). Amongst the pro-inflammatory cytokines produced in the 

inflamed intestine, tumor necrosis factor (TNF)-α is considered to play an important role in 

disrupting the intestinal epithelial barrier by induction of intestinal epithelial cell (IEC) 

apoptosis and shedding. Already in 1998, Piguet et al. showed in mice that acute intravenous 

administration of exogenous TNF-α leads to apoptosis of the IEC layer in a TNF type I 

receptor (TNFR1)-dependent manner and TNF was recently shown to be the crucial mediator 

of IEC apoptosis and shedding upon intraperitoneal injection of lipopolysaccharide in mice 

(Piguet et al., 1998; Williams et al., 2013). Apoptosis and IEC shedding in mouse is 

histologically analogous to that in humans (Bullen et al., 2006). 

Reactive oxygen species (ROS) have been implicated as second messengers during 

TNF-α-induced cell death in various cell systems (for review, see (Shen & Pervaiz, 2006)). The 

major ROS-producing enzyme systems are the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase family, the mitochondrial electron transport chain (ETC) with complex I and 

III as major superoxide producers, xanthine oxidase and dysfunctional uncoupled endothelial 

nitric oxide (NO) synthase (eNOS) (Li et al., 2013a). The contribution of ROS to TNF-α-

induced IEC apoptosis has been mainly investigated in rat IECs. ROS production from NADPH 

oxidase (NOX) was implicated in TNF-α-induced apoptosis of the rat IEC line IEC-6 (Jin et al., 

2008), while mitochondrial dysfunction including enhanced mitochondrial ROS production 

was proposed for TNF-α-induced apoptosis in rat IEC line RIE-1 (Baregamian et al., 2009). 

Additionally, in rat enterocytes isolated 1 h after opening of the abdominal wall and 

intestinal handling, a condition inducing postoperative ileus where TNF-α is one of the 

inflammatory cytokines involved (Kalff et al., 2003), xanthine oxidase activity was 

significantly increased (Anup et al., 1999) and correspondingly, exposure of a human IEC 

monolayer to xanthine/xanthine oxidase significantly increased permeability (Mukojima et 

al., 2009). eNOS is not expressed in IECs (Chen et al., 2002; Konig et al., 2002) so that 
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uncoupled eNOS is unlikely as a ROS source in IECs. For the mouse IEC line MODE-K, we have 

previously reported that TNF-α/cycloheximide (CHX)-induced apoptosis corresponds with 

the production of ROS (Babu et al., 2012). The aim of the actual study was therefore to 

investigate the intracellular sources of TNF-α-induced ROS production in this model with 

particular attention for the mitochondrial sites of ROS production. Mitochondrial ROS are 

primarily superoxide anions and at least seven distinct sites of mitochondrial superoxide 

production have been described (Brand, 2010). A basal level of mitochondrial superoxide 

anions is present during normal respiration and its generation from complex I and III of the 

ETC is accepted to occur under physiologic conditions (Chen et al., 2003; Muller et al., 2004). 

Additionally, emerging evidence shows that complex II could also contribute to significant 

ROS production during pathological conditions like ischemia/reperfusion (Drose, 2013). In 

this study in MODE-K cells, total or mitochondrial ROS production by TNF-α/CHX was 

measured in parallel with induced cell death via flow cytometry in the absence or presence 

of pharmacological inhibitors of the various ROS-producing systems. Additionally, the 

influence of TNF-α/CHX on mitochondrial membrane potential (Ψm) and cellular oxygen 

consumption was studied. 

 

IV.3 Materials and methods 

IV.3.1 Chemicals and reagents 

Recombinant murine TNF-α was purchased from R&D system (Minneapolis, MN, 

USA). Reagents for cell culture, including Dulbecco’s modified Eagle’s medium (DMEM), 

penicillin/streptomycin, glutamax and fetal bovine serum were obtained from Gibco BRL 

(Grand Island, NY, USA). 2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) 

triphenylphosphonium chloride monohydrate (Mito-TEMPO) and JC-10 were purchased 

from Enzo Life Sciences (Zandhoven, Belgium). APC Annexin V, carboxylated (carboxy-

H2DCFDA) and chloromethyl (CM-H2DCFDA) analogues of 2′7′-dichlorodihydrofluorescein 

diacetate acetyl ester (H2DCFDA), Hoechst blue 33342, MitoTracker Deep Red FM, 

MitoTracker Green FM, MitoSOX Red, Sytox Red, Sytox Green and tetramethyl rhodamine 

methyl ester (TMRM) were purchased from Molecular Probes – Invitrogen (Carlsbad, CA, 

USA). The cell permeable lipophilic iron chelator, salicylaldehyde isonicotinoyl hydrazone 
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(SIH) was a kind gift from Prof. Dr. U Brunk. All other chemicals were obtained from Sigma 

(St. Louis, MO, USA). 

IV.3.2 Cell culture 

The mouse small IEC line, MODE-K (a generous gift from Dr. Ingo B. Autenrieth, 

University of Tübingen, Germany) was used in our study. This is a cell line derived from the 

duodenum-jejunum from normal young C3H/HeJ mouse immortalized by simian virus (SV)-

40 large T gene transfer. The cells are undifferentiated but still exhibit morphological and 

phenotypic characteristics of normal enterocytes (Vidal et al., 1993). MODE-K cells (passage 

10–35) were cultured in high-glucose DMEM supplemented with 10% fetal bovine serum, 2 

mM L-glutamine, and 5% penicillin/streptomycin. Cultures were maintained in a humidified 

5% CO2 atmosphere at 37°C and experiments were conducted on cells at approximately 80-

90% confluence. MODE-K cells were seeded at specified cell density in various experiments, 

grown for 36 h and then serum starved overnight (except when used for the cellular oxygen 

consumption assay). On day 3, cells were treated with various concentrations of TNF-α/CHX 

for 0-6 h. All the drugs tested for possible interference with TNF-α/CHX-induced effects were 

pre-incubated from 1 h before exposure to TNF-α/CHX, followed by co-incubation of drugs 

with various concentrations of TNF-α/CHX for 6 h, with the exception of the hydrophilic iron 

chelator desferrioxamine (DFO), which needs 3 h pre-incubation before exposure to  

TNF-α/CHX. The influence of drugs per se on cell viability was studied on day 3 by incubating 

MODE-K cells with a concentration dilution series for 12 h. The drugs were tested for 

possible interference with TNF-α/CHX-induced effects at the highest possible concentration 

without an effect per se on cell viability based on quantitation of ATP in MODE-K cells. 

IV.3.3 Cellular ATP measurement and determination of cell viability 

Cell viability was assessed using the CellTiter-Glo Luminescent Cell Viability Assay 

(Promega, Madison, WI, USA) according to the manufacturer's protocol. This assay 

determines the number of viable cells in culture based on quantitation of ATP present, an 

indicator of metabolically active cells. Briefly, MODE-Κ cells were plated at 1 x 104 cells per 

200 µL of culture medium per well in a 96-well microtiter plate. At the end of the 12 h 

incubation period with drugs on day 3, an equivolume of the luminescent substrate and lysis 

buffer mix from the assay kit was added. The mixture was transferred to an opaque 96-well 
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plate and luminescence was recorded using a GloMax Microplate Luminometer (Promega). 

The index of cellular viability was calculated as percentage of luminescence with respect to 

untreated control cells. 

IV.3.4 Flow cytometric analysis of mode of cell death 

We have previously reported that TNF-α/CHX induces apoptotic cell death in MODE-K 

cells as evidenced by increase in caspase-3/7 activity and DNA fragmentation (assessed as 

hypodiploid DNA content by flow cytometry) (Babu et al., 2012). The mode and kinetics of 

cell death was further characterized by annexin V and propidium iodide (PI) staining by using 

FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen). One of the earliest events during 

apoptosis, the exposure of phosphatidylserine to the outer cell surface, is measured by its 

binding to FITC annexin V. Briefly, 2.5 x 105 cells per well were seeded in 6-well plates. After 

exposure of cells to TNF-α/CHX for 0-6 h, floating and adherent cells were collected, washed 

with PBS and then resuspended in 1x annexin V binding buffer at 1 x 106 cells/ml. To 0.1 ml 

of solution containing 1 x 105 cells, 5 μl of FITC Annexin V and 5 μl PI (10 µg/ml in PBS) were 

added; the cell suspension was gently vortexed and left incubated for 30 min at RT in the 

dark. A volume of 400 μl of 1x annexin V binding buffer was then added to each sample. 

Within 1 h, the cells were analyzed by flow cytometry (FACSCalibur, BD Bioscience, NJ) and 

quantified using CellQuest software (Becton Dickinson, San Jose, CA, USA). FITC Annexin V 

fluorescence was measured using a 530/30 nm bandpass filter (FL1) and PI fluorescence 

using a 670 nm longpass filter (FL3). At least 30,000 cells were acquired from each sample. 

Quadrant statistics were performed to determine viable (Annexin V-/PI-), early apoptotic 

(Annexin V+/PI-), late apoptotic/necrotic (Annexin V+/PI+) and dead cells (Annexin V-/PI+). 

IV.3.5 Measurement of intracellular ROS generation 

IV.3.5.1 Simultaneous determination of intracellular total ROS generation and cell 

death 

The intracellular total ROS production was detected using carboxy-H2DCFDA. 

Carboxy-H2DCFDA is a cell-permeable indicator for ROS that is nonfluorescent until the 

acetate groups are removed by intracellular esterases and oxidation occurs within the cell. 

When oxidized by various active oxygen species, it is irreversibly converted to the 

fluorescent form, DCF. The fluorescence generated by DCF is proportional to the rate of 
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carboxy-H2DCFDA oxidation, which is in turn indicative of the cellular oxidizing activity and 

intracellular ROS levels. For ROS measurements, briefly, 2.5 x 105 cells per well were seeded 

in 6-well plates. Following exposure of cells to TNF-α/CHX for 0-6 h with/without drugs, 

carboxy-H2DCFDA (10 μM) was loaded to the cells for 40 min before the end of the 

treatment period in the dark at 37°C. The floating and adherent cells were collected by 

trypsinization, washed twice with Hanks’ balanced salt solution (HBSS) with calcium and 

magnesium. Sytox Red (2.5 nM) dead cell stain was added to the cell suspension and 

simultaneous detection of ROS production and cell death was performed in a single 

experimental setup by flow cytometry using 488 nm excitation wavelength with 530/30 nm 

(FL1; DCF) and 670/30 (FL4; Sytox Red) emission filters. The green fluorescence of the ROS 

probes was measured only in the viable (Sytox Red-negative) cell population. Cells treated 

with hydrogen peroxide (H2O2) for either 40 min or 3 h were used as a positive control. 

IV.3.5.2 Simultaneous determination of mitochondrial superoxide anion, apoptosis and 

cell death 

MitoSOX Red was used to detect mitochondrial superoxide production anion. This 

modified cationic dihydroethidium dye is localized to the mitochondria where it is oxidized 

by superoxide anion to generate bright red fluorescence. Mitochondrial superoxide anion 

generation, apoptosis and cell death were determined in a single experimental setup as 

previously described (Mukhopadhyay et al., 2007). Briefly, the cells were loaded with 5 µM 

MitoSOX Red and 5 µl APC Annexin V (the latter only for the time kinetic assay) for 30 min 

before the end of treatment period, collected, washed twice with HBSS and then stained 

with 2 nM Sytox Green. The samples were run on a flow cytometer with 488 nm excitation 

to measure oxidized MitoSOX Red in the FL2 channel, APC Annexin V (FL4) and Sytox Green 

(FL1). Cell debris with low FSC (forward scatter) and SSC (side scatter) was excluded from the 

analysis. The cells were then analyzed for APC Annexin V (FL4) and Sytox Green (FL1). Cells 

that exhibited apoptosis (FL4-positive) or were dead (FL1-positive) were excluded from the 

analysis, and viable cells (Annexin V-/Sytox Green-) were gated and the mean fluorescence 

intensity (MFI) of MitoSOX Red staining was analyzed. Thus, MitoSOX Red of the cells 

analyzed excluded any non-specific interferences from apoptotic and dead cells. Cells 

treated for 30 min with 10 µM antimycin-A, an agent well known to generate superoxide 

anions by binding to the Qi site of cytochrome c reductase in the mitochondrial complex III, 

were used as a positive control. 
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For all ROS experiments, (a) the fluorescence properties of at least 30,000 cells were 

acquired from each sample, (b) the samples were analyzed immediately and strictly 

protected from light, (c) basal ROS generation in the cells treated without the stimulus 

(either medium alone or solvent-treated medium) was used as a control, (d) mean 

fluorescence intensities (MFIs) were expressed as percentage of control level set as 100%. 

IV.3.5.3 Imaging of intracellular total ROS/mitochondrial superoxide anion production 

and cell death 

The ROS production in MODE-K cells was also analyzed by imaging using laser 

scanning confocal microscopy (LSCM). Imaging of intracellular total ROS and cell death was 

performed after co-staining with CM-H2DCFDA and Sytox Red while imaging of mitochondrial 

superoxide anion production and cell death was performed after co-staining with MitoSOX 

Red and Sytox Green. Additionally, the cell-permeable DNA dye Hoechst 33342 was used in 

both experiments for nuclear staining. CM-H2DCFDA is a chloromethyl derivative of 

H2DCFDA, but it is much better retained in live cells than carboxy-H2DCFDA. CM-H2DCFDA 

passively diffuses into cells, where its acetate groups are cleaved by intracellular esterases 

and its thiol-reactive chloromethyl group reacts with intracellular glutathione and other 

thiols. Subsequent oxidation yields fluorescent DCF that is trapped inside the cell, which 

facilitates long-term studies. In brief, MODE-K cells were grown on 20 mm-culture dishes at a 

density of 2.3 x 105 cells per dish. On day three, the cells were stimulated with TNF-α  

(1 ng/ml) plus CHX (10 µg/ml) for 1-6 h at 37°C; the combination of dyes (1 µM CM-H2DCFDA 

and 1 µM Sytox Red or 1.25 µM MitoSOX Red and 2 µM Sytox Green, together with 10 µg/ml 

Hoechst 33342) was incubated from 40 min before the end of the incubation period. The 

cells were then washed once and confocal images were captured with a Zeiss LSM780 

confocal microscope (Zeiss, Jena, Germany) every hour from 0 to 6 h. Images were taken by 

using a Plan-Neofluar 25×/0.8 Imm Korr DIC M27 objective (1024 x 1024, pixel size: 332 nm x 

332 nm). Hoechst was excited with the Ti:Sa Laser MaiTai at 780 nm (1.2%). DCF and Sytox 

Green were excited using the 488 nm line of an Argon laser (0.5%). MitoSOX and Sytox Red 

were excited using a 633 nm diode laser (15%). Hoechst signals were collected from 415 to 

499 nm, DCF and Sytox Green from 499 to 569 nm, and MitoSOX and Sytox Red from 605 to 

690 nm. Z-sections were made every 2 µm. Image processing was performed using Fiji 

software. 
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IV.3.6 Detection of mitochondrial membrane potential (Ψm) 

IV.3.6.1 Estimation of mitochondrial membrane potential (Ψm) 

Estimation of mitochondrial membrane potential (Ψm) was performed using JC-10, a 

membrane permeable fluorescent probe. JC-10 is a cationic fluorophore, which is rapidly 

taken up by cells and mitochondria due to their negative charge. Inside mitochondria, JC-10 

forms J-aggregates which emit fluorescence at 590 nm (FL2; red fluorescence). Remaining 

JC-10 in cytosol maintains the monomeric form and emits fluorescence at 525 nm (FL1; 

green fluorescence). Uptake levels of JC-10 in mitochondria depend on the polarization state 

of the mitochondrial membrane. Depolarized mitochondria have lower uptake of JC-10 

compared to polarized mitochondria of a normal healthy cell. Briefly, 2.5 x 105 cells per well 

were seeded in 6-well plates. Following the treatment, cells were washed twice with HBSS 

and then incubated with 5 μM JC-10 solution prepared in DMEM media for 30 min. 

Subsequently, the cells were quickly washed with HBSS prior to measurement. The 

fluorescence intensities of JC-10 monomers and aggregates were quantified, respectively, by 

FL1 (530/30 nm) and FL2 (585/42 nm) detectors of the flow cytometer. The JC-10 

aggregate/monomer ratio is directly proportional to mitochondrial membrane potential 

intensity. This ratiometric method was used with this dye to provide a semi-quantitative 

measurement of Ψm. 

IV.3.6.2 Simultaneous determination of mitochondrial membrane potential (Ψm), 

apoptosis and cell death 

Determination of the changes in mitochondrial membrane potential (Ψm) was also 

performed using TMRM along with staining of APC Annexin V (for apoptosis, only for the 

time kinetic assay) and Sytox Green (for cell death). TMRM is a cell-permeant, lipophilic 

cationic, red-orange fluorescent dye that is readily sequestered by active mitochondria. 

Unlike JC-10, TMRM is a single wavelength dye that can be combined with a cell death 

marker to measure fluorescence exclusively in the live cells. Briefly, following the treatment, 

the cells were washed twice with HBSS and then incubated with 200 nM TMRM solution and 

5 µl APC Annexin V (the latter only for time kinetic assay) prepared in DMEM media for 30 

min. Subsequently, the cells were quickly washed twice with HBSS and stained with 2 nM 

Sytox Green prior to measurement. The percentage of TMRM, Annexin V APC and Sytox 

Green stained cells was calculated from at least 30,000 cells of each sample in comparison to 
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the control. TMRM was excited at 488 nm, and fluorescence emitted at 588 nm (FL2) was 

measured only in the viable (Annexin V-/Sytox Green-) cells by flow cytometry. Cells treated 

for 30 min with 50 µM carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a potent 

uncoupler of oxidative phosphorylation which causes rapid loss of Ψm (loss of TMRM 

fluorescence), was used as a positive control. 

IV.3.7 Measurement of mitochondrial dysfunction 

Determination of respiratory chain damage was performed by double staining with 

two different mitochondria-specific dyes, MitoTracker Green FM and MitoTracker Deep Red 

FM to distinguish total and respiring mitochondria, respectively. Mitochondria in cells 

stained with MitoTracker Green FM dye exhibit bright green fluorescein-like fluorescence 

(FL1; fluorescence emission at 516 nm) as this dye accumulates in the lipid environment of 

mitochondria and becomes fluorescent. MitoTracker Deep Red FM is a red fluorescence 

probe (FL4; fluorescence emission at 665 nm) that does not fluoresce until it enters an 

actively respiring cell, where it is oxidized to the corresponding fluorescent mitochondrion-

selective probe and then sequestered in the mitochondria. The treated cells were incubated 

with 200 nM MitoTracker Green FM and 25 nM MitoTracker Deep Red FM in the dark at 

37°C for 30 min before the end of the treatment period. Next, the cells were harvested and 

the pellets were suspended in 0.5 ml of PBS. The samples were analyzed immediately by 

flow cytometry. The percentage of MitoTracker Green-positive/MitoTracker Deep Red-

negative cells is an important parameter of accumulation of cells with non-respiring 

(dysfunctional) mitochondria (Zhou et al., 2011). 

 

For ROS, Ψm and mitochondrial dysfunction assays, the samples were acquired and 

analyzed using a FACSCalibur using CellQuest software or with an LSR II using DIVA software 

(BD Biosciences). 

IV.3.8 Mitochondrial respiration 

Cellular oxygen consumption in the DMEM XF assay medium containing 1% FCS was 

measured in a Seahorse XF96 Analyzer (Seahorse Bioscience, Billerica, MA, USA). Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) were analyzed following 

the manufacturer’s protocols. Measurements are based on oxygen-dependent quenching of 
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a built-in fluorescent sensor. Briefly, MODE-K cells were seeded at 6.5 x 104 cells per well in 

Seahorse XF96 specialized cell culture plates. Approximately 24 h later, media was replaced 

with DMEM XF assay medium (unbuffered DMEM supplemented with 25 mM glucose, 2 mM 

L-glutamax and 1 mM sodium pyruvate) and cells were incubated for 1 h at 37°C without 

CO2. Then, basal OCR and ECAR were measured simultaneously in the Seahorse XF96 

extracellular flux analyzer for 2 h 30 min. Reagents and chemicals for respiratory stress 

testing were loaded onto XF96 extracellular flux assay plate. TNF-α/CHX, CCCP or 

rotenone/antimycin-A were diluted in DMEM running medium and loaded into port-A,  

port-B and port-C, respectively. Titrations were preliminarily performed to determine the 

optimal concentration of CCCP. In all cell groups, CCCP (50 µM) was added at 115 min to 

determine maximal respiration. Then rotenone (2.5 µM) and antimycin-A (5 µM) were added 

at 130 min to block mitochondrial respiration and non-mitochondrial respiration was 

determined. To test the influence of TNF-α/CHX, it was added at 30 min after five 

measurements of basal respiration. After measuring OCR and ECAR for 2 h 30 min, the 

amount of dead cells in the microchamber of each well was determined on a BD PathwayTM 

855 instrument as described previously (Duprez et al., 2011). This allows normalization of 

the respiratory rates in function of the amount of cells in each microchamber. Cells were 

plated with at least 5 replicate wells for each treatment group. The OCR and ECAR values 

were expressed as percentage of control versus basal measurements. 

IV.3.9 Statistical analysis 

All data were expressed as mean ± SEM. Comparison of the means was performed 

using the Student’s t-test for two groups of data and ANOVA followed by Bonferroni’s 

multiple comparison test for comparison of more than two groups. Differences were 

considered to be significant at P < 0.05. 

IV.4 Results 

IV.4.1 ROS is an important contributor to TNF-α/CHX-induced cell death in MODE-K cells 

We previously reported that TNF-α/CHX-induces ROS production in MODE-K cells 

(Babu et al., 2012). In the current study, simultaneous measurement of intracellular total 

ROS production and cell death was performed by flow cytometric analysis with carboxy-
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H2DCFDA as ROS indicator and Sytox Red as a marker for dead cells. ROS production 

measurements were performed exclusively in the live cell population. As shown in Fig. IV.1A 

(left panel), incubation of the cells with 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX for 6 h induced 

a concentration-dependent increase in MFI of DCF as compared with the control group, 

originating from an increasing percentage of DCF-positive live cells (Fig. IV.2A). The increase 

in ROS production is paralleled by an increase in cell death as measured by Sytox Red 

positivity (Fig. IV.1A, right panel). The increase in DCF MFI by 1 ng/ml TNF-α plus 10 µg/ml 

CHX is maximal as higher concentrations of TNF-α (up to 20 ng/ml) in combination with  

10 µg/ml CHX induced the same degree of DCF MFI (Fig. IV.2B); the response is close to that 

by 20 ng/ml TNF-α plus 25 µg/ml CHX, a classic apoptotic stimulus used in other intestinal 

epithelial cell lines (Bhattacharya et al., 2003; Jin et al., 2008; Naugler et al., 2008; 

Greenspon et al., 2009). To evaluate the time kinetics of TNF-α/CHX-induced ROS production 

and cell death, MODE-K cells were incubated with 1 ng/ml TNF-α plus 10 µg/ml CHX for  

0.5-6 h. As assessed by flow cytometry, significant induction of both ROS generation and cell 

death began after 2 h of exposure to TNF-α/CHX and increased further in a time-dependent 

manner (Fig. IV.1B); this was confirmed by laser scanning confocal microscopy (LSCM) (Fig. 

IV.3). The cell death modality followed apoptotic cell death kinetics as observed by the onset 

of annexin positivity at the same time where ROS production started, i.e., 2 h, with further 

increase upon time (Fig. IV.1C and 2C). Incubation for 40 min with hydrogen peroxide (H2O2), 

a positive control for total ROS production, also increased DCF fluorescence concentration-

dependently (0.5-3 mM), only causing a minor increase in cell death at 3 mM (Fig. IV.4A). 

Increasing the incubation time of H2O2 to 3 h increased both total ROS production and cell 

death in a concentration-dependent manner (Fig. IV.4B). 

To understand the role of ROS production in TNF-α/CHX-induced cell death in  

MODE-K cells, a set of antioxidants and ROS scavengers was tested versus 1 ng/ml TNF-α 

plus 10 µg/ml CHX (Table IV.1). With regard to the effects of hydrophilic antioxidants, the 

superoxide anion scavenger tiron completely abolished TNF-α/CHX-induced ROS production 

with significant partial reduction of cell death (Fig. IV.5A) while N-acetylcysteine (NAC), a 

precursor of the antioxidant reduced glutathione (GSH), significantly reduced both ROS 

production and cell death induced by TNF-α/CHX (Fig. IV.5B). The lipophilic antioxidants, 

butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) both as good as 

abolished TNF-α/CHX-induced ROS production and cell death, suggesting a possible causal 
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relationship between intracellular ROS generation and cell death in this cell system  

(Fig. IV.5C and 6A). On the other hand, the iron chelators, desferrioxamine (DFO) and 

salicylaldehyde isonicotinoyl hydrazone (SIH) also abolished TNF-α/CHX-induced ROS 

production but without any effect on cell death (Fig. IV.5D and 6B). In contrast, when using 

DFO or SIH versus 3 mM H2O2 (incubated for 3 h), they abolished both H2O2-induced total 

ROS production and cell death (Fig. IV.4C and D). 

IV.4.2 NOX and mitochondrial ETC complex enzymes, but not xanthine oxidase, contribute to 

TNF-α/CHX-induced total ROS production and cell death in MODE-K cells 

To determine the sources of ROS generation in response to TNF-α/CHX in MODE-K 

cells, we systematically used pharmacological inhibitors of various ROS producing systems 

within the IECs. Neither the xanthine oxidase inhibitor allopurinol (Fig. IV.7A) nor 

diphenylene iodonium (DPI; Fig. IV.7B), the most commonly used NOX inhibitor which acts 

on flavoproteins, influenced TNF-α/CHX-induced ROS production or cell death. However, a 

well-validated selective pan-NOX inhibitor, VAS-2870, partially reduced TNF-α/CHX-induced 

ROS accompanied by partial reduction in cell death suggesting that NOX is a possible source 

of ROS production in MODE-K cells (Fig. IV.7C). Furthermore, treatment with NSC23766, a 

Rac1 inhibitor known to block NOX activation, also significantly mitigated the ROS 

production and cell death to a similar level as VAS-2870 (Fig. IV.7D). 

Next, various mitochondrial respiration inhibitors blocking a complex enzyme of the 

ETC were tested (Fig. IV.8). Amytal, an inhibitor of the downstream quinone-binding site in 

complex I (IQ) greatly decreased TNF-α/CHX-induced ROS production with near abolishment 

of cell death (Fig. IV.9A). The ubiquinone binding (QP) site inhibitor of complex II, 

theonyltrifluoroacetone (TTFA) completely blocked TNF-α/CHX-induced total ROS 

 

Fig. IV.1   ROS production (assessed with carboxy-H2DCFDA) and cell death (assessed with Sytox Red) in  
TNF-α/CHX-treated MODE-K cells measured by flow cytometry. (A) Influence of 0.1-1 ng/ml TNF-α plus 10 
µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 h, on intracellular total ROS levels 
(expressed as % of control DCF MFI; left panel) and cell death (expressed as % Sytox Red positivity; right panel). 
Control cells were incubated with serum-free medium alone. Mean ± SEM of six independent experiments. *P < 
0.05 versus control. (B) Time course study of the influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 
0.5-6 h, on intracellular total ROS levels (left panel) and cell death (right panel). Mean ± SEM of three 
independent experiments. *P < 0.05 versus untreated (0 h) control group. (C) Influence of 1 ng/ml TNF-α plus 
10 µg/ml CHX, incubated for 1-6 h, on FITC-Annexin V/propidium iodide (PI) positivity. Mean ± SEM of three 
independent experiments. *P < 0.05 versus untreated (0 h) control group. 



Chapter IV 

Sources of ROS during TNF-α/CHX-induced oxidative stress and apoptosis 
 

142 
 

 



Chapter IV 

Sources of ROS during TNF-α/CHX-induced oxidative stress and apoptosis 

143 
 

 



Chapter IV 

Sources of ROS during TNF-α/CHX-induced oxidative stress and apoptosis 
 

144 
 

 

 
Fig. IV.3   Time-dependent induction of ROS production (assessed with CM-H2DCFDA) and cell death (assessed 
with Sytox Red) by TNF-α/CHX in MODE-K cells as imaged with laser scanning confocal microscopy. Time course 
study of influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 0-6 h, on intracellular total ROS 
production and cell death after staining with the ROS probe CM-H2DCFDA (for total ROS production; green, first 
row), the cell-impermeable DNA dye Sytox Red (cell death; red, second row) and chromatin decondensation 
using the cell-permeable DNA dye Hoechst 33365 (for nuclei; blue, third row) imaged in separate channels and 
processed as merged image (fourth row). Results are representative of at least two independent experiments 
imaged at every one-hour time point. 

 

 

Fig. IV.2   ROS production (assessed with carboxy-H2DCFDA) and cell death (assessed with Sytox Red) in  
MODE-K cells. (A) Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, 
incubated for 6 h, on intracellular total ROS production expressed as the percentage of DCF-positive live cells 
(left panel). Control cells were incubated with serum-free medium alone. Mean ± SEM of six independent 
experiments. *P < 0.05 versus untreated control group. Representative histogram of control and 1 ng/ml TNF-α 
plus 10 µg/ml CHX-treated group after carboxy-H2DCFDA staining in live cell population. The cells in M1 region 
represents the DCF-positive cells (right panel). (B) Influence of 1-20 ng/ml TNF-α plus 10 µg/ml CHX and of 20 
ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 h, on intracellular total ROS production after carboxy-H2DCFDA 
staining (expressed as % of control DCF MFI; left panel) and cell death (expressed as % Sytox Red positivity; 
right panel). Mean ± SEM of six independent experiments. *P < 0.05 versus untreated control group. (C) Time 
course study of TNF-α/CHX-induced apoptotic cell death in MODE-K cells. Representative dot plots of flow 
cytometric analysis showing the influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 0.25-6 h, on FITC 
Annexin V/propidium iodide (PI) positivity. Membrane changes leading to phosphatidylserine exposure 
occurring with the onset of apoptosis is measured by its binding with FITC Annexin V. Viable cells with intact 
membranes exclude PI, whereas the membranes of dead and damaged cells are permeable to PI. The shift of 
cells from the lower left quadrant (FITC Annexin V−/PI−) to the lower right quadrant (FITC Annexin V+/PI−) is 
clearly visible from 2 h on, while the shift to the upper right quadrant (FITC annexin V+/PI+) is visible from 3 h 
on. 
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Effect of commonly used antioxidants or inhibitors of ROS-generating enzymes on TNF-α/CHX-induced 

intracellular total ROS level and cell death 

 Percentage reduction of TNF-α/CHX-induced 

Antioxidants or inhibitors 
ROS level 

(DCF fluorescence) 

Cell death 

(Sytox Red positivity) 

Tiron 2.5 mM 95.2 ± 2.6* 46.6 ± 5.6* 

N-acetylcysteine (NAC) 20 mM 66.9 ± 2.7* 44.2 ± 1.2* 

Butylated hydroxyanisole (BHA) 200 µM 98.7 ± 0.7* 108.6 ± 2.8* 

Butylated hydroxytoluene (BHT) 50 µM 94.6 ± 1.7* 90.1 ± 2.1* 

Desferrioxamine (DFO) 1 mM 98.3 ± 1.4* 8.5 ± 2.3 

Salicylaldehyde isonicotinoyl hydrazone (SIH) 

100 µM 
86.7 ± 1.6* 2.9 ± 5.1 

Allopurinol 200 µM 3.4 ± 13.3 1.2 ± 4.2 

Diphenylene iodonium (DPI) 100 µM 1.3 ± 4.2 0.6 ± 2.1 

VAS-2870 10 µM 61.9 ± 2.9* 36.1 ± 3.3* 

NSC23766 50 µM 75.4 ± 4.0* 34.7 ± 5.5* 

Amytal 5 mM 76.3 ± 2.6* 90.5 ± 1.3* 

Theonyltrifluoroacetone (TTFA) 0.25 mM 97.5 ± 0.9* 75.8 ± 5.6* 

Malonate 1 mM 60.6 ± 1.1* -0.4 ± 4.0 

Antimycin-A 10 µM -29.2 ± 34.9 -9.1 ± 12.2 

Myxothiazole 1 µM 25.9 ± 1.8* 44.0 ± 2.9* 

Potassium cyanide (KCN) 2 mM 90.7 ± 1.1* 81.5 ± 1.2* 

Oligomycin 1 µM 38.0 ± 12.0* 42.0 ± 0.8* 

Carbonylcyanide m-chlorophenylhydrazone (CCCP)  
1 µM 

52.2 ± 7.7* 47.0 ± 9.3* 

Carbonyl cyanide p-trifluoro 
methoxyphenylhydrozone (FCCP) 0.5 µM 

23.5 ± 1.7* 57.7 ± 1.9* 

Mito-TEMPO 5 µM 9.6 ± 4.1 8.0 ± 7.9 

 

Mean ± SEM, n = 3, *: Significant reduction of the increase in intracellular total ROS level or cell death, induced 

by TNF-α (1 ng/ml)/CHX (10 µg/ml) (P < 0.05) 
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production with concomitant reduction of cell death (Fig. IV.9B). On the other hand, 

malonate, a competitive carboxylate (succinate) site inhibitor of complex II at the flavin 

binding domain, significantly reduced the ROS level but without any influence on cell death 

(Fig. IV.9C). Antimycin-A and myxothiazole, acting at different sites within complex III, are 

known to increase or decrease ROS, respectively. Accordingly, antimycin-A (Qi site inhibitor) 

per se induced ROS production but did not modulate TNF-α/CHX-induced ROS and cell death 

levels (Fig. IV.9D). On the other hand, myxothiazole (Qo site inhibitor) at the concentration 

used per se mildly induced ROS production; but it also mildly reduced TNF-α/CHX-induced 

ROS with pronounced recovery of cell death (Fig. IV.10A). The complex IV inhibitor 

potassium cyanide (KCN) nearly abolished TNF-α/CHX-induced ROS production and cell 

death (Fig. IV.10B). The complex V (F0F1-ATP synthase) inhibitor, oligomycin moderately 

reduced both TNF-α/CHX-induced ROS production and cell death, even though at the used 

concentration it per se mildly induced ROS production without affecting cell death as 

compared to control (Fig. IV.10C). The proton ionophore uncouplers, CCCP and carbonyl 

cyanide p-trifluoromethoxyphenylhydrozone (FCCP) both decreased TNF-α/CHX-induced 

ROS production and cell death partially but with variable effects, where FCCP resulted in less 

pronounced reduction of ROS levels and in higher cell death prevention as compared to 

CCCP (Fig. IV.10D and 11A). It should be noted however that FCCP per se increased ROS 

production mildly as compared to control. The mitochondria-targeted antioxidant Mito-

TEMPO did not show any effect on ROS generation or cell death induced by TNF-α/CHX (Fig. 

IV.11B). 

These results suggest that NOX and mitochondria, but not xanthine oxidase, 

contribute to ROS production and cell death after TNF-α/CHX challenge in MODE-K cells. 

 

 

Table IV.1 Effect of commonly used antioxidants or inhibitors of ROS-generating enzymes on TNF-α  
(1 ng/ml) plus CHX (10 µg/ml)-induced intracellular total ROS level and cell death in MODE-K cells stained with 
carboxy-H2DCFDA and Sytox Red (expressed as % reduction of the increase induced by TNF-α/CHX; a negative 
value indicates that the response to TNF-α/CHX increased in the presence of the compound).  
DCF: dichlorofluorescein. Mean ± SEM of three independent experiments. *: Significant reduction of the 
response to TNF-α/CHX (P < 0.05). 
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IV.4.3 TNF-α/CHX induces mitochondrial superoxide anion production in MODE-K cells 

In mitochondria, superoxide anion is generated as a byproduct during the flow of 

electrons through the four ETC complexes to molecular oxygen and is considered as the 

primary ROS originating from mitochondria. MitoSOX Red, a novel sensitive probe for highly 

selective detection of superoxide anion generated in the mitochondria of live cells (Robinson 

et al., 2006) was thus tested. Incubation of MODE-K cells with 0.1-1 ng/ml TNF-α plus  

10 µg/ml CHX for 6 h increased MitoSOX Red-detectable superoxide levels in a 

concentration-dependent manner, corresponding with the concentration-dependent 

increase in cell death (Fig. IV.12A). Moreover, 1 ng/ml TNF-α plus 10 µg/ml CHX for 0.5-6 h 

induced a time-dependent increase in mitochondrial superoxide anion production (Fig. 

IV.12B, left panel) starting at 2 h, which was paralleled by apoptosis (annexin positivity; data 

not shown) and cell death (Sytox Green positivity; Fig. IV. 12B, right panel). The 

mitochondrial superoxide level induced by 6 h of incubation with 1 ng/ml TNF-α plus 10 

µg/ml CHX was nearly 3 fold higher as the control level. Laser scanning confocal microscopic 

(LSCM) analysis confirmed the time-dependent increase in mitochondrial superoxide level 

(MitoSOX Red fluorescence) and cell death (Sytox Green fluorescence) by 1 ng/ml TNF-α plus 

10 µg/ml CHX (Fig. IV.13). Antimycin-A also increased generation of mitochondrial 

superoxide in a concentration-dependent manner further confirming the specificity of 

detection of mitochondrial superoxide generation by MitoSOX Red (data not shown). 

The mitochondrial complex I and II inhibitors amytal and TTFA, that nearly abolished 

total ROS production and cell death by TNF-α/CHX, were then tested on TNF-α/CHX-induced 

mitochondrial superoxide anion generation. Treatment with amytal significantly decreased 

TNF-α (1 ng/ml) plus CHX (10 µg/ml)-induced mitochondrial superoxide level by 72.9 ± 3.3% 

and cell death by 83.6 ± 4.9% (n = 3; Fig. IV.12C). TTFA abolished TNF-α/CHX-induced  

 

Fig. IV.4   ROS production and cell death in H2O2-treated MODE-K cells. (A and B) Influence of 0.25-3 mM H2O2, 
incubated for 40 min (A) or 3 h (B), on intracellular total ROS levels (expressed as % of control DCF MFI; left 
panel) and cell death (expressed as % Sytox Red positivity; right panel). Control cells were incubated with 
serum-free medium alone. Mean ± SEM of six (A) and three (B) independent experiments are given. *P < 0.05 
versus control. (C and D) Effect of desferrioxamine (DFO) or salicylaldehyde isonicotinoyl hydrazone (SIH) on 
H2O2-induced intracellular total ROS production and cell death in MODE-K cells measured by flow cytometry. 
Influence of 1 mM H2O2, incubated for 3 h, on intracellular total ROS levels (left panel) and cell death (right 
panel) in the absence and presence of 1 mM DFO (C) or 100 µM SIH (D). Control cells were incubated with 
serum-free medium alone; the effect of DFO or SIH per se was also tested. Mean ± SEM of three independent 
experiments. *P < 0.05 versus control. #P < 0.05 versus 1 mM H2O2 alone. 
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Fig. IV.6   Effect of a lipophilic antioxidant or of an iron chelator on TNF-α/CHX-induced total ROS production 
(assessed with carboxy-H2DCFDA) and cell death (assessed with Sytox Red) in MODE-K cells measured by flow 
cytometry. Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on intracellular total ROS levels 
(left panel) and cell death (right panel) in the absence and presence of 200 µM butylated hydroxyanisole (BHA; 
A) or 100 µM salicylaldehyde isonicotinoyl hydrazone (SIH; B). Control cells were incubated with serum-free 
medium alone; the effect of BHT or SIH per se was also tested. Mean ± SEM of three independent experiments. 
*P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 

 

 

mitochondrial superoxide production and reduced TNF-α/CHX-induced cell death by 77.5 ± 

3.8% (n = 3; Fig. IV.12D). This suggests that complex I (ubiquinone binding IQ site) and II (QP 

site) might be the major contributors of mitochondrial superoxide production. 

 
Fig. IV.5   Effect of antioxidants on TNF-α/CHX-induced total ROS production and cell death in MODE-K cells. 
Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on intracellular total ROS levels (left panel) 
and cell death (right panel) in the absence and presence of 2.5 mM tiron (A), 20 mM N-acetylcysteine (NAC; B), 
50 µM butylated hydroxytoluene (BHT; C) or 1 mM desferrioxamine (DFO; D). Control cells were incubated with 
serum-free medium alone; the effect of each antioxidant per se was also tested. Mean ± SEM of three 
independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 
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Fig. IV.8   Graphical representation of different ROS producing sites in the mitochondria and the site of action 
of mitochondrial complex inhibitors. Flavin mononucleotide (FMN); Coenzyme Q (CoQ); Ubiquinone binding 
site of complex I (IQ); Flavin adenine dinucleotide (FAD); Proximal ubiquinone binding site of complex II (QP); 
Ubiquinol oxidation site of complex III (Qo site); Ubiquinone reduction site of complex III (Qi site); Cytochrome 
c (Cyt c). 
 

IV.4.4 Influence of TNF-α/CHX on mitochondrial membrane potential (Ψm), mitochondrial 

dysfunction and respiratory rate of MODE-K cells 

As ROS generation and depolarization of mitochondrial membrane potential (Ψm) can 

contribute to apoptosis (Ricci et al., 2003), we next examined the changes in Ψm in MODE-K 

cells. Treatment of MODE-K cells with 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX induced a 

concentration-dependent increase in cells with depolarized mitochondria (TMRM assay,  

 

Fig. IV.7   Effect of inhibitors of xanthine oxidase, NOX or Rac1 on TNF-α/CHX-induced total ROS production and 
cell death in MODE-K cells. Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on intracellular 
total ROS levels (left panel) and cell death (right panel) in the absence and presence of 200 µM allopurinol 
(Allo; A), 100 µM diphenylene iodonium (DPI; B), 10 µM VAS-2870 (VAS; C) or 50 µM NSC23766 (NSC; D). 
Control cells were incubated with serum-free medium alone; the effect of each inhibitor per se was also tested. 
Mean ± SEM of three independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 
10 µg/ml CHX alone. 
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Fig. IV.14A, left panel and JC-10 assay, Fig. IV.15A) with concomitant increase in cell death 

(as assessed with Sytox Green in combination with the TMRM assay, Fig. IV.14A, right panel). 

About 60% of the cells treated with TNF-α (1 ng/ml) plus CHX (10 µg/ml) showed a reduction 

in Ψm, suggesting that a decrease in their respiratory chain activity or mitochondrial 

uncoupling might play an important role in cell death. The positive control CCCP dissipated 

the mitochondrial membrane potential in a concentration-dependent manner (JC-10 assay, 

Fig. IV.15B). The time kinetic assay with TNF-α (1 ng/ml) plus CHX (10 µg/ml) for 0.25-6 h 

showed that the depolarization of mitochondria started as early as 1 h and increased further 

in a time-dependent manner while annexin positivity and cell death started at 2 h (Fig. 

IV.14B). This suggests that collapse of the Ψm occurred as an early event during TNF-α/CHX-

induced apoptotic cell death in MODE-K cells. The most effective tested antioxidant, BHA, 

nearly abolished TNF-α/CHX-induced mitochondrial depolarization and cell death (Fig. 

IV.15C) implying that the changes in mitochondrial membrane potential might be a crucial 

event during cell death in MODE-K cells. Additionally, as an indicator of dysfunction of 

mitochondria, two types of mitochondria-specific dyes were used to distinguish actively 

respiring (MitoTracker Deep Red FM-positive) and total (MitoTracker Green FM-positive) 

mitochondria. TNF-α (0.1-1 ng/ml) plus CHX (10 µg/ml) increased the amount of respiration-

interrupted mitochondria in a concentration- and time-dependent (tested with 1 ng/ml; 

increase starting at 1 h) manner suggesting that mitochondrial dysfunction plays a crucial 

role in apoptotic cell death of MODE-K cells (Fig. IV.16 and 17). These data together suggest 

that dysfunctional mitochondria with reduced integrity might allow leakage of ROS from the 

mitochondria contributing to cell death. 

We next investigated whether the observed increase in ROS production and decrease 

in mitochondrial transmembrane potential could be related to modulation of mitochondrial 

energy metabolism. To this end, we measured cellular oxygen consumption and glycolysis 

rate using a Seahorse XF96 analyzer. Addition of TNF-α (1 ng/ml) plus CHX (10 µg/ml)  

 

Fig. IV.9   Effect of inhibitors of mitochondrial electron transport chain complex I, II or III on TNF-α/CHX-induced 
total ROS production and cell death in MODE-K cells. Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated 
for 6 h, on intracellular total ROS levels (left panel) and cell death (right panel) in the absence and presence of  
5 mM amytal (Amy; A), 0.25 mM theonyltrifluoroacetone (TTFA; B), 1 mM malonate (Mal; C) or 10 µM 
antimycin-A (Ant-A; D). Control cells were incubated with serum-free medium alone; the effect of each 
inhibitor per se was also tested. Mean ± SEM of three independent experiments. *P < 0.05 versus control. #P < 
0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 
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Fig. IV.11   (A and B) Effect of a proton ionophore uncoupler or of a mitochondria-targeted antioxidant on  
TNF-α/CHX-induced total ROS production and cell death in MODE-K cells. Influence of 1 ng/ml TNF-α plus  
10 µg/ml CHX, incubated for 6 h, on intracellular total ROS levels (left panel) and cell death (right panel) in the 
absence and presence of 0.5 µM carbonyl cyanide p-trifluoromethoxyphenylhydrozone (FCCP; A) or 5 µM Mito-
TEMPO (Mito; B). Control cells were incubated with serum-free medium alone; the effect of the compounds 
per se was also tested. Mean ± SEM of three independent experiments. *P < 0.05 versus control. #P < 0.05 
versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 

 

 

Fig. IV.10   Effect of inhibitors of mitochondrial electron transport chain complex III, IV or V or of a proton 
ionophore uncoupler on TNF-α/CHX-induced total ROS production and cell death in MODE-K cells. Influence of 
1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, on intracellular total ROS levels (left panel) and cell death 
(right panel) in the absence and presence of 1 µM myxothiazole (Myxo; A), 2 mM potassium cyanide (KCN; B),  
1 µM oligomycin (Oligo; C) or 1 µM carbonylcyanide m-chlorophenylhydrazone (CCCP; D). Control cells were 
incubated with serum-free medium alone; the effect of each inhibitor per se was also tested. Mean ± SEM of 
three independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX 
alone. 
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Fig. IV.13   Time-dependent induction of mitochondrial superoxide anion production (assessed with MitoSOX 
Red) and cell death (assessed with Sytox Green) by TNF-α/CHX in MODE-K cells as imaged with laser scanning 
confocal microscopy. Time course study of influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 0-6 h, 
on mitochondrial superoxide anion production and cell death after staining with the mitochondrial superoxide 
probe MitoSOX Red (for superoxide production; red, first row), the cell-impermeable DNA dye Sytox Green (cell 
death; green, second row) and chromatin decondensation using the cell-permeable DNA dye Hoechst 33365 
(for nuclei; blue, third row) imaged in separate channels and processed as merged image (fourth row). Results 
are representative of at least two independent experiments imaged at every one-hour time point. 

 

 

Fig. IV.12   TNF-α/CHX-induced mitochondrial superoxide anion production (assessed with MitoSOX Red) and 
cell death (assessed with Sytox Red) in MODE-K cells measured by flow cytometry. (A) Influence of 0.1-1 ng/ml 
TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 h, on mitochondrial 
superoxide anion levels (expressed as % of control MitoSOX Red MFI; left panel) and cell death (expressed as % 
Sytox Red positivity; right panel). Control cells were incubated with serum-free medium alone. Mean ± SEM of 
six independent experiments. (B) Time course study of the influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, 
incubated for 0.5-6 h, with simultaneous determination of mitochondrial superoxide anion production 
(expressed as % of control MitoSOX Red MFI; left panel), annexin positivity (data not shown) and cell death 
(expressed as % Sytox Green positivity; right panel). Mean ± SEM of three independent experiments. *P < 0.05 
versus untreated control group in all panels. (C and D) Effect of inhibitors of mitochondrial electron transport 
chain complex I or complex II on TNF-α/CHX-induced mitochondrial superoxide anion production and cell death 
in MODE-K cells measured by flow cytometry. Influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 6 h, 
on mitochondrial superoxide anion levels (left panel) and cell death (right panel) in the absence and presence 
of 5 mM amytal (Amy; C) or 0.25 mM theonyltrifluoroacetone (TTFA; D). Control cells were incubated with 
serum-free medium alone; the effect of each inhibitor per se was also tested. Mean ± SEM of three 
independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 
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induced a significant decrease in basal oxygen consumption rate (OCR; a measure of 

mitochondrial respiration) of MODE-K cells within a few minutes of its administration. The 

first value of OCR in the presence of TNF-α/CHX dropped by 21% compared to the value just 

before its addition; in the corresponding control group (medium treatment only), the drop 

was only 4% (P < 0.05 versus control). This drop in OCR after TNF-α/CHX addition persisted 

over the period of observation (until 115 min) with concurrent decrease of the basal 

extracellular acidification rate (ECAR; a measure of lactate release; data not shown) as 

compared to control (Fig. IV.18A and B). TNF-α/CHX also increased the maximal respiration 

induced by CCCP, however without any influence on the minimal non-mitochondrial 

respiratory rate. 

IV.5 Discussion 

IV.5.1 ROS overproduction plays a major role in TNF-α/CHX-induced cell death of MODE-K 

cells 

In the present study, we have utilized the well-characterized DCF fluorescence assay 

for measurement of total ROS production and observed that TNF-α/CHX-induced ROS only 

appears after 2 h in MODE-K cells. In contrast, TNF-α induced a rapid and transient increase 

in ROS production (rising as early as 15 min and already again decreasing in the 1 h exposure 

period) in rat RIE-1 cells (Baregamian et al., 2009), while TNF-α/CHX induced a rapid increase 

in ROS production from 20 min on (that was maintained for the 2 h exposure period) in rat 

IEC-6 cells (Jin et al., 2008). Interestingly, MODE-K cells showed a significant increase in DCF 

fluorescence only upon treatment with a high concentration of exogenous H2O2 (0.5 mM) for 

40 min while, contrarily, the same concentration of H2O2 for 15 min increased DCF 

fluorescence in the rat IEC-6 cells to the same ROS level as induced by TNF-α (20 ng/ml) plus 

 

Fig. IV.14   TNF-α/CHX-induced depolarization of mitochondrial membrane potential and apoptotic cell death in 
MODE-K cells measured by flow cytometry. (A) Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of  
20 ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 h, on mitochondrial membrane potential (expressed as % of 
cells with depolarized mitochondria after TMRM staining; left panel) and cell death (expressed as % Sytox 
Green positivity; right panel). Control cells were incubated with serum-free medium alone. Mean ± SEM of six 
independent experiments. *P < 0.05 versus control. (B) Time course study of influence of 1 ng/ml TNF-α plus  
10 µg/ml CHX, incubated for 0.25-6 h, on mitochondrial membrane potential (% of cells with depolarized 
mitochondria after TMRM staining), apoptosis (annexin positivity) and cell death (Sytox Green positivity). Mean 
± SEM of three independent experiments. *P < 0.05 versus untreated (0 h) control group. 
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CHX (25 µg/ml) treatment for 30 min (Jin et al., 2008). This suggests that MODE-K cells are 

highly resistant to the initial burst of oxidative stress by H2O2. Moreover, the time-

dependent ROS and cell death generation by TNF-α/CHX starting at 2 h suggests that the 

mouse intestinal epithelial cells are able to counteract the initial burst of oxidative stress up 

to a certain time point, after which the antioxidant defense can no longer be maintained. 

From then on, ROS signaling might lead to apoptotic cell death, as evidenced by annexin 

positivity. 

The reduction of both total ROS and cell death by a variety of antioxidants implies 

that ROS production might contribute to TNF-α/CHX-induced cell death in MODE-K cells. 

Moreover, the more pronounced effect of lipophilic BHT and BHA as compared to NAC in 

reducing TNF-α/CHX-induced ROS level and cell death suggests that the cytotoxic ROS 

produced is less accessible to NAC, which is a hydrophilic antioxidant, and thus might be 

released predominantly in the hydrophobic domain of the mitochondrial membrane. This is 

corroborated by the inability of the water-soluble mitochondria-targeted antioxidant mito-

TEMPO to suppress ROS generation or cell death. Therefore, we additionally assessed the 

contribution of mitochondrial ROS by direct measurement of the primary species of intra-

mitochondrial ROS, the superoxide anion with MitoSOX Red and we have shown, for the first 

time, an increase in the levels of mitochondrial superoxide anion with TNF-α/CHX in IECs. 

Our observation that mitochondria are an important source of ROS generation during TNF-α-

induced cell death in mouse MODE-K IECs is in agreement with previous reports in rat IECs, 

where the involvement of mitochondrial ROS in TNF-α-induced ROS production was studied 

 

 
Fig. IV.15   Influence of TNF-α/CHX and CCCP on mitochondrial membrane depolarization and effect of the 
antioxidant butylated hydroxyanisole (BHA) versus TNF-α/CHX in MODE-K cells as assessed by flow cytometry. 
(A) Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 
h, on mitochondrial membrane potential measured after JC-10 staining by flow cytometry (expressed as % of 
cells with polarized and depolarized mitochondria; left panel). (B) Influence of 1-5 µM·CCCP, incubated for 6 h, 
on mitochondrial membrane potential measured after JC-10 staining (expressed as % of cells with polarized 
and depolarized mitochondria; left panel). Control cells were incubated with serum-free medium alone. Mean 
± SEM of three independent experiments. *P < 0.05 versus control. In both (A) and (B), the right panels show 
representative dot plots of the flow cytometric analysis for the different concentrations of TNF-α/CHX or CCCP 
on the distribution of JC-10 aggregates (cells emitting red fluorescence in the FL-2 channel; R2 gate) and JC-10 
monomers (cells emitting green JC-10 detected in the FL-1 channel; R3 gate). (C) Influence of 1 ng/ml TNF-α 
plus 10 µg/ml CHX, incubated for 6 h, on mitochondrial membrane potential (expressed as % of cells with 
depolarized mitochondria after TMRM staining; left panel) and cell death (expressed as % Sytox Green 
positivity; right panel) in the absence and presence of 200 µM butylated hydroxyanisole (BHA). Control cells 
were incubated with serum-free medium alone; the effect of BHA per se was also tested. Mean ± SEM of three 
independent experiments. *P < 0.05 versus control. #P < 0.05 versus 1 ng/ml TNF-α plus 10 µg/ml CHX alone. 
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Fig. IV.16   TNF-α/CHX-induced concentration-dependent mitochondrial dysfunction in MODE-K cells. (A) 
Influence of 0.1-1 ng/ml TNF-α plus 10 µg/ml CHX and of 20 ng/ml TNF-α plus 25 µg/ml CHX, incubated for 6 h, 
on the amount of respiring mitochondria assessed with Mitotracker Green FM (FL1; FITC) and Mitotracker 
Deep Red FM (FL4; APC) staining. Representative dot plots of the flow cytometric analysis showing the effect of 
various concentrations of TNF-α/CHX on the population of cells (gated on live cells) losing mitochondrial 
potential and with respiration-interrupted mitochondria (shift of cell population towards P2 gated region). (B) 
Quantification of flow cytometric measurements (expressed as % of cells with dysfunctional mitochondria). 
Mean ± SEM of three independent experiments. *P < 0.05 versus untreated control group. 
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Fig. IV.17   TNF-α/CHX-induced time-dependent mitochondrial dysfunction in MODE-K cells. (A) Time course 
study of influence of 1 ng/ml TNF-α plus 10 µg/ml CHX, incubated for 0-6 h, on the amount of respiring 
mitochondria assessed with Mitotracker Green FM (FL1; FITC) and Mitotracker Deep Red FM (FL4; APC) 
staining. Representative dot plots of the flow cytometric analysis showing the effect of 1 ng/ml TNF-α plus 10 
µg/ml CHX upon time on the population of cells (gated on live cells) losing mitochondrial potential and with 
respiration-interrupted mitochondria (shift of cell population towards P2 gated region). (B) Quantification of 
flow cytometric measurements (expressed as % of cells with dysfunctional mitochondria). Mean ± SEM of three 
independent experiments. *P < 0.05 versus untreated (0 h) control group. 
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by use of mitochondrial DNA (mtDNA)-depleted rho zero (ρ°) cells (RIE-1 cells) (Baregamian 

et al., 2009) and using dihydrorhodamine 123 (IEC-6 cells) (Jin et al., 2008). However, our 

result with the novel fluorogenic probe MitoSOX Red certifies both species (superoxide 

anion) and organelle specificity (mitochondria) of ROS generation in living cells retaining a 

functional mitochondrial respiratory chain. The kinetic measurement of mitochondrial 

superoxide levels indicates the onset of mitochondrial ROS production at 2 h after exposure 

to TNF-α/CHX, when also apoptotic cell death starts. 

The abolishment of TNF-α/CHX-induced total ROS production by iron chelators 

without any influence on cell death excludes the contribution of iron-mediated oxidative 

stress in TNF-α/CHX-induced cell death of MODE-K cells. Iron mediates the Fenton reaction, 

transferring hydrogen peroxide to the highly toxic hydroxyl radical. The latter can thus 

indeed not contribute to TNF-α/CHX-induced cell death in MODE-K cells in the presence of 

the iron chelators (Vanden Berghe et al., 2010). Although non-specific and measuring all 

types of ROS, DCF shows more pronounced reactivity with hydroxyl radical than with 

hydrogen peroxide (39 fold difference) and superoxide anion (110 fold difference) 

(Setsukinai et al., 2003). In the presence of iron chelators, other ROS than hydroxyl radical, 

such as superoxide anion and hydrogen peroxide, might still be generated and contribute to 

cell death, but not be measurable with DCF. In contrast, the influence of DFO versus a 

cytotoxic concentration of H2O2 illustrates that H2O2-induced cytotoxicity is mainly due to 

the hydroxyl radical. Similar to the iron chelators, tiron abolished TNF-α/CHX-induced ROS 

production, but in contrast to them, it partially reduced TNF-α/CHX-induced cell death. Tiron 

is known to exert its antioxidant effect by metal chelation in addition to its superoxide anion  

 

Fig. IV.18   TNF-α/CHX-induced decrease in mitochondrial respiration in MODE-K cells. (A) Influence of 1 ng/ml 
TNF-α plus 10 µg/ml CHX, incubated for 2 h, on cellular oxygen consumption rate (OCR, expressed as % of 
basal). OCR was measured at different time points for 2.5 h. First, five consecutive measurements of baseline 
respiration during incubation with medium alone for 30 min were done. Then, 1 ng/ml TNF-α plus 10 µg/ml 
CHX was injected or not (control) followed by six consecutive measurements. Subsequently, the protonophore 
CCCP was added (50 μM) to measure maximal oxygen consumption for three measurements. Finally, the 
complex I inhibitor rotenone (2.5 μM) plus the complex III inhibitor antimycin-A (5 μM) were injected, followed 
by three consecutive measurements to determine the minimal mitochondrial respiration. Finally, the amount 
of viable cells (HOECHST+/PI- cells) in the microchamber of each well was determined by automated imaging. 
Data are expressed as percentage relative to the basal OCR measured just before TNF-α/CHX injection. The 
data represent the average of five replicates for each condition. (B) Absolute values for basal, maximal and 
minimal OCR after addition of medium (control) or TNF-α/CHX in MODE-K cells were analyzed as described 
above in (A). The data represent the oxygen consumption rate (pmol O2 per minute) per 1000 cells ± S.E.M 
(n=4). 
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scavenger and superoxide dismutase mimetic properties (Krishna et al., 1992). Thus, the 

reduction of TNF-α/CHX-induced cell death by tiron in contrast to the lack of effect of the 

iron chelators could be attributed to the latter effects at the cytoplasmic level. 

IV.5.2 NOXs contribute to ROS production during TNF-α/CHX-induced cell death in MODE-K 

cells 

The contribution of mitochondria as a major source of ROS production however does 

not exclude other ROS sources in the cell. Allopurinol failed to modulate TNF-α/CHX-induced 

ROS levels and cell death excluding xanthine oxidase as a possible source of ROS production 

in MODE-K cells. The NOX isozymes present in the mouse small intestinal epithelium are 

NOX1 and dual oxidase (DUOX)1/2 (Bedard & Krause, 2007; Jones et al., 2013). DPI, the most 

commonly used classical inhibitor of NOX enzymes, did not modulate the ROS level or the 

cell death induced by TNF-α/CHX. DPI is a specific flavoprotein inhibitor that not only inhibits 

the flavin component of NOX, but also inhibits the flavin site in mitochondrial complex I, 

which leads to increased mitochondrial ROS generation from complex I at a concentration as 

low as 1 µM (Li et al., 2003; Riganti et al., 2004; Liu & Schubert, 2009). However, in our study 

DPI at 100 µM per se did not induce total ROS generation. These results suggest that the ROS 

production site of TNF-α/CHX-treated MODE-K cells is not a DPI-inhibitable flavin site. 

However, the recently developed pan-NOX inhibitor VAS-2870 (Altenhofer et al., 2012) 

moderately decreased TNF-α/CHX-induced increase in ROS, suggesting that part of ROS 

generation could be attributed to NOX enzymes. Additionally, a relatively similar effect of 

NSC23766 to that of VAS-2870 implies that Rac1 mediated activation of NOX isozymes partly 

contributes to TNF-α/CHX-induced ROS production in MODE-K cells, corresponding to the 

role of Rac1 regulation in NOX-derived ROS production by TNF-α/CHX treatment of rat IEC-6 

cells (Jin et al., 2008). TNF-α has also been reported to lead to NOX-induced ROS production 

in cell systems other than IECs (Li et al., 2005; Kim et al., 2007; Lai et al., 2012). Moreover, 

activation of TNFR1 has been shown to lead to recruitment of NOX1, involving riboflavin 

kinase (Yazdanpanah et al., 2009). Thus, NOX is clearly one of the enzymatic ROS production 

systems involved during TNF-α/CHX-induced cell death of MODE-K cells. 
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IV.5.3 Mitochondrial complex I and II are the major contributors of ROS production during 

TNF-α/CHX-induced cell death in MODE-K cells 

Mitochondrial ROS has previously also been implicated in TNF-α-induced cytotoxicity 

(Jin et al., 2008; Kim et al., 2010). The investigation of the relative contribution of the 

respiratory chain complexes to TNF-α/CHX-induced ROS production by use of various 

inhibitors revealed the complex nature of ROS production in living MODE-K cells. Amytal, an 

inhibitor of the quinone-binding site in complex I (IQ) reduced TNF-α/CHX-induced ROS by 

76% and cell death by 91%. In contrast to malonate that inhibits complex II at the flavin 

binding domain, the pronounced effect of TTFA in mitigating TNF-α/CHX-induced ROS and 

cell death strongly suggests that the Qp site of complex II might be a major mitochondrial 

contributor of ROS production during TNF-α/CHX-induced cell death. The mitochondrial 

respiratory chain complexes I and III have been suggested to be the major mitochondrial ROS 

sources in the physiological state with normal oxygen levels (Chen et al., 2003; Turrens, 

2003). However, complex II has been implicated in hypoxia-induced ROS generation 

(Paddenberg et al., 2003) and tissue damage associated with oxidative stress (Ralph et al., 

2011). As treatment of MODE-K cells with TNF-α/CHX quickly induces decreased 

mitochondrial oxygen consumption (based on mitochondrial respiration analysis), 

mechanisms as occurring during hypoxia could develop so that it is plausible that complex II 

might also contribute to ROS production. Under such a condition, blockade of complex II at 

the Qp site by TTFA leads to a reduction of complex I related ROS production, generated by 

the reverse electron transfer from complex II into complex I. The partial reduction of  

TNF-α/CHX-induced ROS and cell death by myxothiazole, a Qo site inhibitor of complex III, 

implies that complex III is also involved in ROS production by TNF-α in MODE-K cells. 

Cyanide is a well-known inhibitor of cytochrome c oxidase (complex IV), by binding to 

heme a3; the effect of potassium cyanide shows that complex IV also in some way 

participates in ROS production by TNF-α/CHX-treated MODE-K cells. Oligomycin, an inhibitor 

of the proton-translocating ATP-synthase, also showed a protective effect in MODE-K cells, 

which is in agreement with a report in Hela cancer cells where oligomycin inhibited TNF-α-

induced ROS overproduction and cell death (Shchepina et al., 2002) suggesting a possible 

involvement of energy-coupled mechanisms in TNF-α-induced effects. Complex IV (involved 

in the reduction of molecular oxygen to water) and complex V (involved in the production of 
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ATP) are probably not direct sites of ROS production, but probably indirectly regulate ROS 

production from the mitochondria. The major sources of TNF-α/CHX-induced ROS 

production indeed seem complexes I, II and III at their interaction sites with the coenzyme Q 

(CoQ) in the Q cycle pool : IQ in complex I, QP in complex II and Qo in complex III. Superoxide 

released from complex III via Qo is released towards the intermembrane space, while 

complex I and II release superoxide towards the matrix. Superoxide released from complex 

III towards the matrix via the Qi site does not seem to contribute to TNF-α/CHX-induced ROS 

production in MODE-K cells, as antimycin-A had no protective influence. The effect of amytal 

and TTFA in mitigating TNF-α/CHX-induced MitoSOX Red fluorescence further underlines 

that complexes I (at the IQ site) and II (at the QP site) are major mitochondrial ROS 

production sites during TNF-α/CHX-induced cell death in MODE-K cells. Indeed, reverse 

electron transport from complex II to complex I is proposed to be a major pathway for 

mitochondrial ROS production (Drose, 2013). 

As the electrons are passed between the complexes from I to IV, complexes I, III and 

IV pump protons out of the mitochondrial matrix into the intermembrane space creating an 

electrochemical gradient across the mitochondrial inner membrane, the proton-motive 

force, consisting of a transmembrane electric potential and a transmembrane pH gradient. 

ROS production in the mitochondria is highly sensitive to changes in proton-motive force 

with slight increases intensifying ROS production and vice versa (Mailloux & Harper, 2012). 

Mild mitochondrial uncoupling with reduction of the mitochondrial membrane potential 

could thus effectively limit ROS generation (Produit-Zengaffinen et al., 2007) and this has 

been implicated as a negative feedback mechanism, counteracting elevated ROS (Papa & 

Skulachev, 1997; Echtay et al., 2003). Under conditions of oxidative stress, reduction of the 

proton gradient across the mitochondrial membrane by mild uncoupling is known to reduce 

mitochondrial ROS production particularly during reverse electron transport (Miwa et al., 

2003; Lambert & Brand, 2004; Giardina et al., 2008). In addition to reducing mitochondrial 

superoxide anion production, “mild” mitochondrial uncoupling has been hypothesized to be 

a protective mechanism against excessive ROS production by invoking the antioxidant 

defense system preventing cell death (“uncoupling to survive”) (Skulachev, 1996; Brand, 

2000; Mailloux & Harper, 2011). The addition of the proton ionophore uncouplers 1 h before 

exposure of MODE-K cells to TNF-α/CHX lowers the proton-motive force, and can thus be 

expected to attenuate mitochondrial superoxide production. The proton ionophore-induced 
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uncoupling might also induce the protective antioxidant defense system, contributing to the 

reduction of TNF-α/CHX-induced cell death with FCCP and CCCP. 

Mitochondrial function is crucial in maintaining the cellular integrity as mitochondria 

are the main cellular sites controlling energy metabolism and the redox state. Moreover, 

mitochondrial membrane potential (Ψm), metabolic state of mitochondria, and oxygen levels 

are the major factors regulating ROS production in mitochondria (Li et al., 2013b). The effect 

of the potent antioxidant BHA in restoring mitochondrial membrane polarization necessary 

for oxidative phosphorylation with concomitant recovery of cell death further underlines the 

importance of mitochondrial integrity to prevent TNF-α/CHX-induced cell death. Our 

observation that treatment of MODE-K cells with TNF-α/CHX causes a rapid decrease in 

cellular oxygen consumption creating a hypoxic state (within 5 min of addition) and a 

decrease in Ψm (occurring within 60 min) and mitochondrial dysregulation (starting at 60 

min) at earlier time points than ROS production and cell death (starting at 2 h), suggests that 

there could be a sequential link between these events. Taken together, targeted therapies to 

mitigate mitochondrial ROS could be of potential therapeutic benefit in reducing intestinal 

epithelial cell death and barrier dysfunction. 

IV.5.4 Possible interplay between NOX and mitochondria during TNF-α/CHX-induced cell 

death in MODE-K cells 

More recently, the possible existence of interplay between the NOX and 

mitochondrial sources of ROS has been proposed, where an increase in mitochondrial ROS 

can lead to NOX activation and vice versa (Dikalov, 2011). Interestingly, an increase in 

cellular ROS level originating from mitochondria was observed during serum starvation of 

human 293T cells; the mitochondrial ROS then trigger NOX1 activation by stimulating 

phospho-inositide 3-kinase and Rac1 and this pathway maintains ROS production in a later 

phase. Moreover, mitochondrial ROS are essential to initiate the process leading to cell 

death, but need the sustained accumulation of ROS by NOX activation to effectively induce 

cell death, as both inhibition of mitochondrial- or NOX-related ROS production prevented 

cell death (Lee et al., 2006). In agreement with that, the more pronounced effect in 

decreasing total cellular ROS and cell death by some of the mitochondrial complex inhibitors 

as compared to the moderate effect of the NOX inhibitor VAS-2870 in MODE-K cells, 
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suggests that TNF-α/CHX treatment of serum-starved MODE-K cells might trigger an initial 

phase of mitochondria-derived ROS production followed by a late phase of ROS production 

from NOX, whereby Rac1 might mediate the late (but not early) stage of ROS accumulation 

by interacting with NOX1. Additionally, a report in pulmonary artery smooth muscle cells 

showed more direct evidence for a role of hypoxia-induced mitochondrial ROS formation in 

NOX activation and further ROS production mediated via PKCε activation (Rathore et al., 

2008). So, it seems plausible that a similar ROS-derived cell death mechanism might occur 

upon TNF-α/CHX exposure of serum-deprived MODE-K cells, as this results in a state of low 

oxygen level as observed by the decrease in cellular oxygen consumption. However, this 

warrants further investigation to better understand the cross-talk between mitochondria 

and NOX during cellular stress response in IECs. 

 

In summary, this study presents evidence that mitochondria and NOX are the two 

major sources of ROS overproduction during TNF-α/CHX-induced cell death in MODE-K cells 

with superoxide anions being the major ROS species. In particular, the quinone-binding sites 

of mitochondrial complex I (site IQ) and complex II (site QP) seem to be the major sites of 

mitochondrial ROS production. Moreover, with TNF-α/CHX treatment, the decrease in 

mitochondrial respiration and loss of Ψm occurring as early events followed by subsequent 

ROS production might lead to apoptotic cell death in MODE-K cells. These findings might 

advance our understanding of the role of ROS production during cytokine-induced epithelial 

cell death involved in many acute gastrointestinal inflammatory conditions for the 

development of selective targeted therapy towards mitigating mitochondrial oxidative 

stress. 
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Chapter V 

Antioxidant potential of CORM-A1 and resveratrol during  

TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine 

intestinal epithelial MODE-K cells 

 

V.1  Abstract 

Background. Targeting excessive production of reactive oxygen species (ROS) could 

be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal 

inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major 

sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in 

the mouse intestinal epithelial cell line, MODE-K. 

Methods. In the current study, the influence of a polyphenolic compound 

(resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on 

the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. 

This was compared with H2O2-, rotenone- or antimycin-A-induced ROS-generating systems. 

Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion 

(O2
) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced 

changes in mitochondrial membrane potential (Ψm) and mitochondrial function was studied. 

Key results. In basal conditions, CORM-A1 did not affect intracellular total or 

mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced 

mitochondrial ROS production. TNF-α/CHX- and H2O2-mediated increase in intracellular total 

ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol 

attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased 

antimycin-A-induced mitochondrial O2
 production without any influence on TNF-α/CHX- 

and rotenone-induced mitochondrial O2
 levels, while resveratrol abolished all three effects. 

Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial 
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depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these 

parameters. 

Conclusions. These data indicate that the cytoprotective effect of resveratrol is 

predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-

derived ROS to protect MODE-K cells from TNF-α/CHX-induced cell death. This might explain 

the more pronounced cytoprotective effect of resveratrol. 
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V.2  Introduction 

Disturbance of the intestinal epithelial barrier function is observed with the 

development of mucosal inflammation during acute and chronic enteropathies (Sharma & 

Tepas, 2010; Snoek et al., 2012; Pastorelli et al., 2013). Reactive oxygen species (ROS) are 

one of the major key players involved in the initiation and progression of inflammation 

(Mittal et al., 2014). Oxidative stress-induced epithelial cell damage leading to increased 

intestinal permeability and translocation of intraluminal endotoxins might trigger muscular 

inflammation during various conditions involving acute gastrointestinal (GI) inflammation 

such as postoperative ileus, septic ileus, necrotizing enterocolitis and acute intestinal 

ischemia/reperfusion (I/R) (Anup et al., 1999; de Winter et al., 2005; Baregamian et al., 

2009; De Backer et al., 2009; Guan et al., 2009). Moreover, overproduction of ROS with 

extensive mucosal injury has also been observed for chronic GI inflammation in animal 

models of inflammatory bowel disease (IBD) (Ahn et al., 2001; Reifen et al., 2004; Cetinkaya 

et al., 2005) and in colonic samples of ulcerative colitis patients (Oshitani et al., 1993; 

Nishikawa et al., 2005). Antioxidant treatment appears to reduce oxidative stress and 

associated inflammation in animal models of colitis (Millar et al., 1996; Damiani et al., 2007; 

Vasina et al., 2010) and in patients with ulcerative colitis (Aghdassi et al., 2003; Barbosa et 

al., 2003; Seidner et al., 2005). 

An array of pro-inflammatory cytokines is released within the intestinal mucosa 

during various GI inflammatory disorders (Kim et al., 2012) and, among others, tumor 

necrosis factor (TNF)-α is an early inflammatory mediator in inflamed intestine (Holtmann et 

al., 2002). Induction of intestinal epithelial cell (IEC) apoptosis and cell shedding by TNF-α is 

thought to play an important role in epithelial barrier dysfunction. We and others have 

reported that ROS play an important role in TNF-α-induced apoptotic cell death of IECs (Jin 

et al., 2008; Baregamian et al., 2009; Babu et al., 2012). In rat IEC-6 cells, the nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase (NOX) family and the mitochondrial 

electron transport chain (ETC) are the two major ROS-producing sources involved in  

TNF-α/cycloheximide (CHX)-induced cell death (Jin et al., 2008). The same accounts for 

murine MODE-K cells; particularly, in addition to NOX, complexes I and II of the 

mitochondrial ETC were found to be the main sites of superoxide anion (O2
) production 

from the mitochondria, the primary ROS species originating from this organelle (Babu et al., 
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2015). These data indicate that the endogenous antioxidant defence system might not be 

sufficient to counteract TNF-α-induced ROS production, suggesting that mitigating excessive 

ROS production might be of therapeutic value to reduce intestinal barrier dysfunction during 

GI inflammation. 

Among the endogenous intracellular antioxidant pathways, heme oxygenase-1  

(HO-1) has a prominent role in the adaptation of tissues against oxidative stress since this 

redox-sensitive inducible enzyme generates biliverdin, a powerful antioxidant, and carbon 

monoxide (CO), which acts as a crucial signaling factor mediating a variety of important 

pharmacological effects (Ryter et al., 2006). CO-releasing molecules (CO-RMs), a class of 

organometallic compounds liberating CO in biological systems in a controllable manner, have 

been developed to mimic the antioxidant, anti-inflammatory and cytoprotective effects of 

CO (Motterlini et al., 2002; Sawle et al., 2005; Motterlini & Otterbein, 2010). The inhibitory 

effect of CO and CO-RMs on cytokine-induced changes in IECs might contribute to their 

beneficial effect in acute GI inflammation (Babu et al., 2014). The exact mechanism(s) of 

action of CO is still under scrutiny but emerging evidence indicates that the beneficial 

properties of CO may be linked to its ability to bind to heme-containing proteins such as NOX 

and mitochondrial complexes in different tissues (Taille et al., 2005; Bilban et al., 2008). The 

cytoprotective properties of CO/CO-RMs in IECs and their effect on cellular targets mediating 

ROS production in comparison to classical antioxidants have not been investigated so far. 

Resveratrol, a bioactive polyphenolic antioxidant present in red wine has been extensively 

studied with regard to cardiovascular and neuronal protection (Foti Cuzzola et al., 2011; 

Wang et al., 2012). Experimental data show that it also significantly ameliorates acute 

intestinal inflammation, such as induced by I/R (Ozkan et al., 2009) or by oral infection with 

Toxoplasma gondii (Bereswill et al., 2010). We previously showed that CORM-A1 as well as 

resveratrol reduced both TNF-α/CHX-induced ROS production and apoptosis in MODE-K IECs 

(Babu et al., 2012). The aim of the present study was therefore to investigate the influence 

of CORM-A1 and resveratrol on the different sources of TNF-α/CHX-induced ROS production 

in MODE-K cells. We also examined the effects of CORM-A1 and resveratrol on 

mitochondrial function by assessing TNF-α/CHX-induced changes in mitochondrial 

membrane potential (Ψm) and cellular oxygen consumption. 
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V.3 Materials and methods 

V.3.1 Chemicals and reagents 

Reagents for cell culture, including Dulbecco’s modified Eagle’s medium (DMEM), 

penicillin/streptomycin, glutamax and fetal bovine serum were obtained from Gibco BRL 

(Grand Island, NY, USA). JC-10 was purchased from Enzo Life Sciences (Zandhoven, Belgium). 

Carboxylated analogue of 2′7′-dichlorodihydrofluorescein diacetate acetyl ester (carboxy-

H2DCFDA), dihydrorhodamine 123 (DHR123), Hoechst blue 33342, MitoTracker Deep Red 

FM, MitoTracker Green FM, MitoSOX Red, Sytox Green, Sytox Red and 

tetramethylrhodamine methyl ester (TMRM) were purchased from Molecular Probes – 

Invitrogen (Carlsbad, CA, USA). Recombinant murine TNF-α was purchased from R&D system 

(Minneapolis, MN, USA). The cell permeable lipophilic iron chelator, salicylaldehyde 

isonicotinoyl hydrazone (SIH), was a kind gift from Prof. Dr. U Brunk. CORM-A1 was 

synthesized as previously described (Motterlini et al., 2005). All other chemicals were 

obtained from Sigma (St. Louis, MO, USA). All chemicals were dissolved in DMSO, except 

CORM-A1 and desferrioxamine (DFO), that were dissolved in water, and TNF-α, that was 

dissolved in phosphate buffered saline. 

V.3.2 Cell culture 

The mouse small IEC line, MODE-K (a generous gift from Dr. Ingo B. Autenrieth, 

University of Tübingen, Germany) was used in our study. This is a cell line derived from the 

duodenum-jejunum from normal young C3H/HeJ mouse immortalized by simian virus (SV)-

40 large T gene transfer. The cells are undifferentiated but still exhibit morphological and 

phenotypic characteristics of normal enterocytes (Vidal et al., 1993). MODE-K cells (passage 

10–35) were cultured in high-glucose DMEM supplemented with 10% fetal bovine serum,  

2 mM L-glutamine, and 5% penicillin (10,000 units/ml)/streptomycin (10 mg/ml). Cultures 

were maintained in a humidified 5% CO2 atmosphere at 37°C and experiments were 

conducted on cells at approximately 80-90% confluence. MODE-K cells were seeded at 

specified cell density in various experiments, grown for 36 h and then serum starved 

overnight (except when used for the cellular oxygen consumption assay). On day 3, cells 

were treated with 1 ng/ml TNF-α plus 10 µg/ml CHX for 6 h. All the drugs tested for possible 

interference with TNF-α/CHX-induced effects were pre-incubated from 1 h before exposure 
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to TNF-α/CHX followed by co-incubation of drugs with TNF-α/CHX for 6 h, with the exception 

of the hydrophilic iron chelator DFO, which needs 3 h pre-incubation before exposure to 

TNF-α/CHX. Except otherwise indicated, the drugs used in the actual study (allopurinol, 

CORM-A1, DFO, NSC23766, resveratrol, SIH and VAS-2870) were applied in the highest 

possible concentration without an effect per se on cell viability of MODE-K cells when 

incubated for 12 h, based on quantitation of ATP (see Babu et al., 2012; Babu et al., 2015). 

V.3.3 Simultaneous determination of intracellular total or mitochondrial ROS generation 

and cell death 

In our previous study in MODE-K cells, CORM-A1 and resveratrol reduced both  

TNF-α/CHX-induced ROS production and apoptosis as assessed in two separate assays, i.e. 

fluorescence measurement of carboxy-H2DCFDA with a microtiter plate reader, and flow 

cytometric analysis of DNA hypoploidy upon staining with propidium iodide (PI), respectively 

(Babu et al., 2012). In the actual study, ROS production and cell death were measured 

simultaneously by flow cytometry, allowing measurement of ROS production in gated viable 

cells. 

Carboxy-H2DCFDA is a cell-permeable indicator for ROS that is nonfluorescent until 

the acetate groups are removed by intracellular esterases and oxidation occurs within the 

cell. When oxidized by various active oxygen species, it is irreversibly converted to the 

fluorescent form, DCF. The fluorescence generated by DCF is proportional to the rate of 

carboxy-H2DCFDA oxidation, which is in turn indicative of the cellular oxidizing activity and 

intracellular ROS levels. DHR123 has been reported as a marker for mitochondrial ROS 

production (Jin et al., 2008; Basu Ball et al., 2011; Tiede et al., 2011). It is an uncharged and 

non-fluorescent ROS indicator that can passively diffuse across membranes where it is 

oxidized to cationic rhodamine 123 (R123) which localizes in the mitochondria and exhibits 

green fluorescence. For ROS measurements, briefly, 2.5 x 105 cells per well were seeded in  

6-well plates. Following exposure of cells to 1 ng/ml TNF-α plus 10 µg/ml CHX for 6 h 

with/without drugs, carboxy-H2DCFDA (10 μM) or DHR123 (1 μM) was loaded to the cells for 

40 min before the end of the treatment period in the dark at 37°C. The floating and adherent 

cells were collected by trypsinization and washed twice with Hanks’ balanced salt solution 

(HBSS) with calcium and magnesium. Sytox Red (2.5 nM) dead cell stain was added to the 

cell suspension and simultaneous detection of ROS production and cell death was performed 
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in a single experimental setup by flow cytometry using 488 nm excitation wavelength with 

530/30 nm (FL1; DCF or R123) and 670/30 (FL4; Sytox Red) emission filters. Viable (Sytox 

Red-negative) cells were gated and the green fluorescence of the ROS probes was analyzed 

in these cells. Cells treated with 1 mM hydrogen peroxide (H2O2) for 40 min were used as a 

positive control. 

V.3.4 Simultaneous determination of mitochondrial O2
 and cell death 

MitoSOX Red was used to detect mitochondrial O2
 production. This modified 

cationic dihydroethidium dye is localized to the mitochondria where it is oxidized by O2
 to 

generate bright red fluorescence (Robinson et al., 2006). Mitochondrial O2
 generation and 

cell death were determined in a single experimental setup by treating the cell samples with 

MitoSOX Red and Sytox Red. Briefly, the cells were loaded with 5 µM MitoSOX Red for 30 

min before the end of treatment period, collected, washed twice with HBSS and then stained 

with 2.5 nM Sytox Red. The samples were run on a flow cytometer with 488 nm excitation to 

measure oxidized MitoSOX Red in the FL2 channel and Sytox Red in the FL4 channel. Cell 

debris with low FSC (forward scatter) and SSC (side scatter) was excluded from the analysis. 

Dead cells (FL4-positive) were also excluded from the analysis and the mean fluorescence 

intensity (MFI) of MitoSOX Red staining was analyzed in the gated viable cell population 

(Sytox Red-negative). Thus, MitoSOX Red of the cells analyzed excluded any non-specific 

interferences from dead cells. Cells treated for 30 min with 10 µM antimycin-A, an agent 

well known to generate O2
 by binding to the Qi site of cytochrome c reductase in the 

mitochondrial complex III, were used as a positive control. 

 

For all ROS experiments, (a) the fluorescence properties of at least 30,000 cells were 

acquired from each sample, (b) the samples were analyzed immediately and strictly 

protected from light, (c) basal ROS generation in cells not exposed to TNF-α/CHX, in culture 

medium alone or in medium containing the solvent of the drug to be studied versus  

TNF-α/CHX, was used as a control, and (d) mean fluorescence intensities (MFIs) were 

expressed as percentage of control level set as 100%. 
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V.3.5 Detection of mitochondrial membrane potential (Ψm) 

Estimation of mitochondrial membrane potential (Ψm) was performed using JC-10, a 

membrane permeable fluorescent probe. JC-10 is a cationic fluorophore, which is rapidly 

taken up by cells and mitochondria due to their negative charge. Inside mitochondria, JC-10 

forms J-aggregates which emit fluorescence at 590 nm (FL2; red fluorescence). Remaining 

JC-10 in cytosol maintains the monomeric form and emits fluorescence at 525 nm (FL1; 

green fluorescence). Uptake levels of JC-10 in mitochondria depend on the polarization state 

of the mitochondrial membrane. Depolarized mitochondria have lower uptake of JC-10 

compared to polarized mitochondria of a normal healthy cell. Briefly, 2.5 x 105 cells per well 

were seeded in 6-well plates. Following the treatment, cells were washed twice with HBSS 

and then incubated with 5 μM JC-10 solution prepared in DMEM media for 30 min. 

Subsequently, the cells were quickly washed with HBSS prior to measurement. The 

fluorescence intensities of JC-10 monomers and aggregates were quantified, respectively, by 

FL1 (530/30 nm) and FL2 (585/42 nm) detectors of the flow cytometer. The JC-10 

aggregate/monomer ratio is directly proportional to mitochondrial membrane potential 

intensity. This ratiometric method was used with this dye to provide a semi-quantitative 

measurement of Ψm. 

V.3.6 Simultaneous determination of mitochondrial membrane potential (Ψm) and cell 

death 

Determination of the changes in mitochondrial membrane potential (Ψm) was also 

performed using TMRM along with staining of Sytox Green (for cell death). TMRM is a cell-

permeant, lipophilic cationic, red-orange fluorescent dye that is readily sequestered by 

active mitochondria. Unlike JC-10, TMRM is a single wavelength dye that can be combined 

with a cell death marker to measure fluorescence exclusively in the live cells. Briefly, 

following the treatment, the cells were washed twice with HBSS and then incubated with 

200 nM TMRM solution prepared in DMEM media for 30 min. Subsequently, the cells were 

quickly washed twice with HBSS and stained with 2 nM Sytox Green prior to measurement. 

The percentage of TMRM and Sytox Green stained cells was calculated from at least 30,000 

cells of each sample in comparison to the control. TMRM was excited at 488 nm, and 

fluorescence emitted at 588 nm (FL2) was measured in gated viable (Sytox Green-negative) 
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cells by flow cytometry. Cells treated for 30 min with 50 µM carbonyl cyanide 3-

chlorophenylhydrazone (CCCP), a potent uncoupler of oxidative phosphorylation which 

causes rapid loss of Ψm (loss of TMRM fluorescence), were used as a positive control. 

V.3.7 Measurement of mitochondrial dysfunction 

Determination of respiratory chain damage was performed by double staining with 

two different mitochondria-specific dyes, MitoTracker Green FM and MitoTracker Deep Red 

FM to distinguish total and respiring mitochondria, respectively. Mitochondria in cells 

stained with MitoTracker Green FM dye exhibit bright green fluorescein-like fluorescence 

(FL1; fluorescence emission at 516 nm) as this dye accumulates in the lipid environment of 

mitochondria and becomes fluorescent. MitoTracker Deep Red FM is a red fluorescence 

probe (FL4; fluorescence emission at 665 nm) that does not fluoresce until it enters an 

actively respiring cell, where it is oxidized to the corresponding fluorescent mitochondrion-

selective probe and then sequesters in the mitochondria. The treated cells were incubated 

with 200 nM MitoTracker Green FM and 25 nM MitoTracker Deep Red FM in the dark at 

37°C for 30 min before the end of the treatment period. Next, the cells were harvested and 

the pellets were suspended in 0.5 mL of PBS. The samples were analyzed immediately by 

flow cytometry. The percentage of MitoTracker Green-positive/MitoTracker Deep Red-

negative cells is an important parameter of accumulation of cells with non-respiring 

(dysfunctional) mitochondria (Zhou et al., 2011). 

 

For ROS, Ψm and mitochondrial dysfunction assays, the samples were acquired and 

analyzed using a FACSCalibur using CellQuest software or with an LSR II using DIVA software 

(BD Biosciences). 

V.3.8 Mitochondrial respiration 

Cellular oxygen consumption in the DMEM XF assay medium containing 1% FCS was 

measured in a Seahorse XF96 Analyzer (Seahorse Bioscience, Billerica, MA, USA). Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) were analyzed following 

the manufacturer’s protocols. Measurements are based on oxygen-dependent quenching of 

a built-in fluorescent sensor. Briefly, MODE-K cells were seeded at 6.5 x 104 cells per well in 

Seahorse XF96 specialized cell culture plates. Approximately 24 h later, media were replaced 
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with DMEM XF assay medium (unbuffered DMEM supplemented with 25 mM glucose, 2 mM 

L-glutamax and 1 mM sodium pyruvate) and cells were incubated at 37°C without CO2. OCR 

and ECAR were measured simultaneously in the Seahorse XF96 extracellular flux Analyzer for 

2.5 h. Reagents and chemicals for respiratory stress testing were loaded onto XF96 

extracellular flux assay plate. TNF-α/CHX, CCCP or rotenone/antimycin-A were diluted in 

DMEM running medium and loaded into port-A, port-B and port-C, respectively. Titrations 

were preliminarily performed to determine the optimal concentration of CCCP. In all cell 

groups, CCCP (50 µM) was added at 115 min to determine maximal respiration, then 

rotenone (2.5 µM) and antimycin-A (5 µM) were added at 130 min to block mitochondrial 

respiration, determining non-mitochondrial respiration. To test the influence of TNF-α/CHX, 

it was added at 30 min after five measurements of basal respiration. Experiments without 

and with TNF-α/CHX administration, were also performed in the continuous presence of 

CORM-A1 or resveratrol, starting their incubation at 37°C without CO2 from 1 h before 

analysis of OCR and ECAR. After measuring OCR and ECAR for 2.5 h, the number of live and 

dead cells in the microchamber of each well was determined on a BD PathwayTM 855 

imaging instrument as described previously (Duprez et al., 2011). Nuclei of all cells were 

stained by the nuclear dye Hoechst blue 33342, while nuclei of dead cells were stained by 

both Hoechst blue 33342 and PI. The number of live cells was used for normalization of the 

respiratory rate in each microchamber. Cells were plated with at least 5 replicate wells for 

each treatment group. The OCR and ECAR values were expressed as absolute values of 

measurements. 

V.3.9 Statistical analysis 

All data were expressed as mean ± SEM. Comparison of the means was performed 

using the Student’s t-test for two groups of data and ANOVA followed by Bonferroni’s 

multiple comparison test for comparison of more than two groups. Differences were 

considered to be significant at P < 0.05. 

  



Chapter V 

Antioxidant potential of CORM-A1 and resveratrol 
 

191 
 

V.4 Results 

V.4.1 Effects of CORM-A1 and resveratrol on TNF-α/CHX-induced changes in intracellular 

total ROS production and cell death 

To determine whether the modulation of ROS production by CORM-A1 and 

resveratrol could contribute to their corresponding cytoprotective activities, TNF-α/CHX-

induced intracellular total ROS production and cell death were simultaneously measured by 

flow cytometry analysis. Treatment of MODE-K cells with CORM-A1 (100 µM) per se was 

without effect but CORM-A1 significantly reduced both TNF-α/CHX-induced ROS production 

(Fig. V.1A and C) and dead cells (Fig. V.1D). In contrast, resveratrol (75 µM) per se increased 

total ROS production to similar levels induced by TNF-α/CHX but without affecting cell 

survival. Interestingly, treatment of cells with resveratrol significantly reduced both  

TNF-α/CHX-induced ROS production and cell death (Fig. V.1B, E and F). These results 

together imply that the cytoprotective effects of CORM-A1 and resveratrol in MODE-K cells 

can be attributed at least in part to their ability to mitigate oxidative stress as evidenced by 

their direct influence on intracellular ROS production. 

V.4.2 Effects of CORM-A1 and resveratrol on H2O2-induced changes in intracellular total 

ROS production 

The antioxidant capacity of CORM-A1 and resveratrol was further investigated in vitro 

using the model of H2O2-induced oxidative stress in MODE-K cells. For these experiments, 

incubation of cells with 1 mM H2O2 for 40 min was selected as this condition induced a level 

of intracellular total ROS production similar to that induced by TNF-α/CHX for 6 h, albeit 

without inducing cell death. H2O2 increased ROS production by 170% as compared to control 

and CORM-A1 significantly attenuated this effect (Fig. V.2A and C). Resveratrol per se 

increased ROS production to similar levels as induced by H2O2, but still could abolish H2O2-

induced increase in total ROS production (Fig. V.2B and E). Treatment with a hydrophilic 

(DFO) and a lipophilic (SIH) iron chelator abolished H2O2-induced ROS production, with SIH 

also significantly reducing basal ROS production (Fig. V.3A and C). 
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Fig. V.1   Effects of CORM-A1 or resveratrol on TNF-α/CHX-induced intracellular total ROS production and cell 
death in MODE-K cells. MODE-K cells were treated with TNF-α (1 ng/ml) plus CHX (10 µg/ml) in the absence or 
presence of CORM-A1 (100 μM) or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) on  
TNF-α/CHX-induced intracellular total ROS levels assessed with carboxy-H2DCFDA (DCF), and gated on the 
viable, Sytox Red-negative population. Representative overlay histogram plots of DCF fluorescence are shown. 
The cells in M1 region represent the DCF-positive cells contributing to the shift in fluorescence. C-F Influence of 
TNF-α/CHX, incubated for 6 h, on intracellular total ROS levels (expressed as % of control DCF MFI) and cell 
death (expressed as % Sytox Red positivity) in the absence and presence of CORM-A1 (C, D) or resveratrol (Res; 
E, F). Control cells were incubated with serum free medium alone; the effect of CORM-A1 or resveratrol per se 
was also tested. Mean ± SEM of three independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. TNF-α/CHX 
alone. 
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Fig. V.2   Effects of CORM-A1 or resveratrol on H2O2-induced intracellular total ROS production and cell death in 
MODE-K cells. MODE-K cells were treated with H2O2 (1 mM) in the absence or presence of CORM-A1 (100 μM) 
or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) on H2O2-induced intracellular total ROS 
levels assessed with carboxy-H2DCFDA (DCF), and gated on the viable, Sytox Red-negative population. 
Representative overlay histogram plots of DCF fluorescence are shown. The cells in M1 region represent the 
DCF-positive cells contributing to the shift in fluorescence. C-F Influence of H2O2, incubated for 40 min, on 
intracellular total ROS levels (expressed as % of control DCF MFI) and cell death (expressed as % Sytox Red 
positivity) in the absence and presence of CORM-A1 (C, D) or resveratrol (Res; E, F). Control cells were 
incubated with serum free medium alone; the effect of CORM-A1 or resveratrol per se was also tested (not 
shown in the histograms of A and B for clarity). Mean ± SEM of three independent experiments. *P < 0.05 vs. 
control. #P < 0.05 vs. H2O2 alone. 
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Fig. V.3   Effects of the iron chelators desferrioxamine (DFO; 1 mM) and salicylaldehyde isonicotinoyl hydrazone 
(SIH; 100 μM) on H2O2 (1 mM)-induced intracellular total ROS production (assessed with carboxy-H2DCFDA) and 
cell death (assessed with Sytox Red) in MODE-K cells measured by flow cytometry. A-D Influence of H2O2, 
incubated for 40 min, on intracellular total ROS levels (expressed as % of control DCF MFI) and cell death 
(expressed as % Sytox Red positivity) in the absence and presence of DFO (A, B) or SIH (C, D). Control cells were 
incubated with serum free medium alone; the effect of DFO or SIH per se was also tested. Mean ± SEM of three 
independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. H2O2 alone. 

V.4.3 Effects of CORM-A1 and resveratrol on TNF-α/CHX-induced changes in mitochondrial 

ROS production and cell death 

In rat IEC-6 cells, some supporting evidence that DHR123 marks mitochondrial ROS 

has been reported (Jin et al., 2008). The DHR123 fluorescent probe was therefore used to 

assess the effects of CORM-A1 and resveratrol on TNF-α/CHX-induced ROS production by 

mitochondria. Treatment with TNF-α/CHX resulted in a significant increase in mitochondrial 

ROS production compared to control cells (Fig. V.4A, B, C and E). CORM-A1 did not have any  



Chapter V 

Antioxidant potential of CORM-A1 and resveratrol 
 

195 
 

 

Fig. V.4   Effects of CORM-A1 or resveratrol on TNF-α/CHX-induced mitochondrial ROS production and cell 
death in MODE-K cells. MODE-K cells were treated with TNF-α (1 ng/ml) plus CHX (10 µg/ml) in the absence or 
presence of CORM-A1 (100 μM) or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) on  
TNF-α/CHX-induced mitochondrial ROS levels assessed with DHR123 (R123), and gated on the viable, Sytox 
Red-negative population. Representative overlay histogram plots of R123 fluorescence are shown. The cells in 
M1 region represent the R123-positive cells contributing to the shift in fluorescence. C-F Influence of  
TNF-α/CHX, incubated for 6 h, on mitochondrial ROS levels (expressed as % of control R123 MFI) and cell death 
(expressed as % Sytox Red positivity) in the absence and presence of CORM-A1 (C, D) or resveratrol (Res; E, F). 
Control cells were incubated with serum free medium alone; the effect of CORM-A1 or resveratrol per se was 
also tested. Mean ± SEM of three independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. TNF-α/CHX 
alone. 
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effect on this parameter (Fig. V.4A and C) despite being able to markedly reduce TNF-α/CHX-

induced cell death (Fig. V.4D). In contrast, resveratrol reduced basal mitochondrial ROS 

levels but also abolished TNF-α/CHX-induced increase in mitochondrial ROS production with 

a concomitant decrease in TNF-α/CHX-induced cell death (Fig. V.4B, E and F). 

V.4.4 Effects of CORM-A1 and resveratrol on TNF-α/CHX-induced changes in mitochondrial 

O2
 production and cell death 

The influence of CORM-A1 and resveratrol on TNF-α/CHX-induced mitochondrial O2
 

production was assessed by using the fluorescent probe MitoSOX Red in conjunction with 

Sytox Red, to discriminate viable versus dead cells, in a single experimental setup. Treatment 

with TNF-α/CHX increased mitochondrial O2
 production by approximately 3 fold as 

compared to control. Although CORM-A1 significantly reduced TNF-α/CHX-induced cell 

death (Fig. V.5D), it did not influence TNF-α/CHX-induced mitochondrial O2
 production (Fig. 

V.5A and C). In contrast, treatment with resveratrol significantly reduced basal mitochondrial 

O2
 levels and prevented the TNF-α/CHX-induced increase in mitochondrial O2

 levels (Fig. 

V.5B and E), with concomitant decrease in TNF-α/CHX-induced cell death (Fig. V.5F). 

V.4.5 Influence of higher concentrations of CORM-A1 and resveratrol on intracellular total 

ROS and mitochondrial O2
 production in MODE-K cells 

Results till now showed that in MODE-K cells 100 µM CORM-A1, incubated for 7 h, 

per se did not influence intracellular total ROS or mitochondrial O2
 levels (Fig. V.1C, 2C and 

5C). Similar results were obtained with higher concentrations of CORM-A1 (150 and 200 µM) 

(Fig. V.6A and C). Treatment of cells with 100 µM CORM-A1 did not change mitochondrial 

O2
 production even at earlier time points (0.25 to 3 h) (Fig. V.6E). However, a higher 

concentration of CORM-A1 (200 µM) promoted a significant increase in mitochondrial O2
 

when incubated for 1 or 2 h (Fig. V.6E). Resveratrol at 75 µM for 7 h was shown to increase 

intracellular total ROS and decrease mitochondrial O2
 (Fig. V.1E, 2E and 5E). Higher 

concentrations of resveratrol (100 µM and 125 µM) induced a concentration-dependent 

increase in total ROS production (Fig. V.7A) and decrease in mitochondrial O2
 production 

(Fig. V.7C) which was accompanied by a significant increase in cell death occurring at 125 µM  
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Fig. V.5   Effects of CORM-A1 or resveratrol on TNF-α/CHX-induced mitochondrial O2
 production and cell 

death in MODE-K cells. MODE-K cells were treated with TNF-α (1 ng/ml) plus CHX (10 µg/ml) in the absence or 
presence of CORM-A1 (100 μM) or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) on  

TNF-α/CHX-induced mitochondrial O2
 levels assessed with MitoSOX Red, and gated on the viable, Sytox Red-

negative population. Representative overlay histogram plots of MitoSOX Red fluorescence are shown. The cells 
in M1 region represent the MitoSOX Red-positive cells contributing to the shift in fluorescence. C-F Influence of 

TNF-α/CHX, incubated for 6 h, on mitochondrial O2
 levels (expressed as % of control MitoSOX Red MFI) and 

cell death (expressed as % Sytox Red positivity) in the absence and presence of CORM-A1 (C, D) or resveratrol 
(Res; E, F). Control cells were incubated with serum free medium alone; the effect of CORM-A1 or resveratrol 
per se was also tested. Mean ± SEM of three independent experiments. *P < 0.05 vs. control. #P < 0.05 vs.  
TNF-α/CHX alone. 
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Fig. V.6   Effects of CORM-A1 (100, 150 and 200 μM) on intracellular total ROS production (assessed with 

carboxy-H2DCFDA), mitochondrial O2
 production (assessed with MitoSOX Red) and cell death (assessed with 

Sytox Red) in MODE-K cells measured by flow cytometry. A-D Influence of CORM-A1, incubated for 7 h, on 

intracellular total ROS levels (expressed as % of control DCF MFI; A), mitochondrial O2
 levels (expressed as % 

of control MitoSOX Red MFI; C) and cell death (expressed as % Sytox Red positivity; B and D). E Influence of 

CORM-A1 (100 and 200 µM), incubated for 0.25-3 h, on mitochondrial O2
 levels. Mean ± SEM of three 

independent experiments. *P < 0.05 vs. control (0 h). 
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Fig. V.7   Effects of resveratrol (75, 100 and 125 μM) on intracellular total ROS production (assessed with 

carboxy-H2DCFDA), mitochondrial O2
 production (assessed with MitoSOX Red) and cell death (assessed with 

Sytox Red) in MODE-K cells measured by flow cytometry. A-D Influence of resveratrol, incubated for 7 h, on 

intracellular total ROS levels (expressed as % of control DCF MFI; A), mitochondrial O2
 levels (expressed as % 

of control MitoSOX Red MFI; C) and cell death (expressed as % Sytox Red positivity; B and D). E-F Effects of 
inhibitors of xanthine oxidase, NOX or Rac-1 on resveratrol-induced total ROS production in MODE-K cells 
measured by flow cytometry. Influence of resveratrol (75 µM), incubated for 7 h, on intracellular total ROS 
levels (E) and cell death (F) in the absence and presence of allopurinol (Allo; 100 µM), VAS-2870 (VAS; 10 µM) 
or NSC23766 (NSC; 50 µM). Control cells were incubated with serum free medium alone. Mean ± SEM of three 
independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. resveratrol alone. 
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(Fig. V.7B and D). The increase in intracellular total ROS by 75 µM resveratrol was not 

influenced by the xanthine/xanthine oxidase inhibitor allopurinol, but was abolished by the 

pan-NOX inhibitor VAS-2870 and the Rac1 inhibitor NSC23766 (Fig. V.7E). 

V.4.6 Effects of CORM-A1 and resveratrol on mitochondrial complex I- and complex III-

induced changes in mitochondrial O2
 and cell death 

The effect of CORM-A1 and resveratrol on O2
 production at the level of 

mitochondrial complex I and complex III was investigated. Rotenone (7.5 µM), an inhibitor of 

mitochondrial complex I, induced a robust increase in mitochondrial O2
 level comparable 

to that induced by TNF-α/CHX (Fig. V.8A, B, C and E) without affecting cell survival  

(Fig. V.8D and F). The concentration of 7.5 µM rotenone was selected based on a 

concentration-response study of the effect of rotenone on mitochondrial O2
, when 

incubated for 6 h to mimic the exposure time to TNF-α/CHX (Fig. V.9A). Treatment with 

CORM-A1 did not affect rotenone-induced mitochondrial O2
 production while resveratrol 

completely abolished this effect (Fig. V.8A, B, C and E). 

The influence of CORM-A1 and resveratrol on mitochondrial O2
 production at the 

level of mitochondrial complex III was investigated by use of the complex III inhibitor 

antimycin-A, an agent well-known to induce O2
 production at this site. Antimycin-A was 

used at 10 µM for 6 h as this concentration did not induce cell death in MODE-K cells, but 

increased mitochondrial O2
 production to a level comparable to that induced by  

TNF-α/CHX (Fig. V.9C and D). Interestingly, CORM-A1 significantly decreased (Fig. V.10A and 

C) while resveratrol completely abolished (Fig. V.10B and E) antimycin-A-induced 

mitochondrial O2
 production. 

V.4.7 Effects of CORM-A1 and resveratrol on TNF-α/CHX-induced changes in mitochondrial 

membrane potential (Ψm), mitochondrial dysfunction and cellular oxygen consumption of 

MODE-K cells 

We next studied the influence of CORM-A1 and resveratrol on TNF-α/CHX-induced 

changes in Ψm. Two different potentiometric dyes, TMRM and JC-10, were used. TMRM  
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Fig. V.8   Effects of CORM-A1 or resveratrol on mitochondrial complex I (rotenone)-induced mitochondrial O2
 

production and cell death in MODE-K cells. MODE-K cells were treated with rotenone (7.5 µM) in the absence 
or presence of CORM-A1 (100 μM) or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) on 

rotenone-induced mitochondrial O2
 levels assessed with MitoSOX Red, and gated on the viable, Sytox Red-

negative population. Representative overlay histogram plots of MitoSOX Red fluorescence are shown. The cells 
in M1 region represent the MitoSOX Red-positive cells contributing to the shift in fluorescence. C-F Influence of 

rotenone (Rot), incubated for 6 h, on mitochondrial O2
 levels (expressed as % of control MitoSOX Red MFI) 

and cell death (expressed as % Sytox Red positivity) in the absence and presence of CORM-A1 (C, D) or 
resveratrol (Res; E, F). Control cells were incubated with serum free medium alone; the effect of CORM-A1 or 
resveratrol per se was also tested (not shown in the histograms of A and B for clarity). Mean ± SEM of three 
independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. rotenone alone. 
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Fig. V.9   Mitochondrial O2
 production (assessed with MitoSOX Red) and cell death (assessed with Sytox Red) 

in rotenone (1-15 µM)- and antimycin-A (5-20 µM)-treated MODE-K cells measured by flow cytometry. A-D 

Influence of rotenone (A, B) or antimycin-A (C, D), incubated for 6 h, on mitochondrial O2
 levels (expressed as 

% of control MitoSOX Red MFI) and cell death (expressed as % Sytox Red positivity). Control cells were 
incubated with serum free medium alone. Mean ± SEM of three independent experiments. *P < 0.05 vs. 
control. 

 

enables the possibility of analyzing cell death simultaneously in combination with the cell 

death marker Sytox Green. About 7-8% of control cells showed depolarized mitochondria. 

Treatment of cells with TNF-α/CHX caused a 60% depolarization of mitochondria as 

measured with both TMRM (Fig. V.11A and C) and JC-10 staining (Fig. V.12A and B).  

CORM-A1 decreased the number of depolarized cells to 43% and 48% (Fig. V.11A and 12A) 

while resveratrol decreased it to 17% and 19% (Fig. V.11C and 12B) for TMRM and JC-10, 

respectively. 
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Fig. V.10   Effects of CORM-A1 or resveratrol on mitochondrial complex III (antimycin-A)-induced mitochondrial 

O2
 production and cell death in MODE-K cells. MODE-K cells were treated with antimycin-A (10 µM) in the 

absence or presence of CORM-A1 (100 μM) or resveratrol (75 μM). A-B Effect of CORM-A1 (A) or resveratrol (B) 

on antimycin-A-induced mitochondrial O2
 levels assessed with MitoSOX Red, and gated on the viable, Sytox 

Red-negative population. Representative overlay histogram plots of MitoSOX Red fluorescence are shown. The 
cells in M1 region represent the MitoSOX Red-positive cells contributing to the shift in fluorescence. C-F 

Influence of antimycin-A (Ant-A), incubated for 6 h, on mitochondrial O2
 levels (expressed as % of control 

MitoSOX Red MFI) and cell death (expressed as % Sytox Red positivity) in the absence and presence of  
CORM-A1 (C, D) or resveratrol (Res; E, F). Control cells were incubated with serum free medium alone; the 
effect of CORM-A1 or resveratrol per se was also tested (not shown in the histograms of A and B for clarity). 
Mean ± SEM of three independent experiments. *P < 0.05 vs. control. #P < 0.05 vs. antimycin-A alone. 
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Fig. V.11   Effects of CORM-A1 (100 μM) or resveratrol (75 μM) on TNF-α (1 ng/ml)/CHX (10 µg/ml)-induced 
changes in mitochondrial membrane potential (assessed with TMRM) and cell death (assessed with Sytox 
Green) in MODE-K cells measured by flow cytometry. A-D Influence of TNF-α/CHX, incubated for 6 h, on 
mitochondrial membrane potential (expressed as % of cells with depolarized mitochondria after TMRM 
staining) and cell death (expressed as % Sytox Green positivity) in the absence and presence of CORM-A1 (A, B) 
or resveratrol (Res; C, D). Control cells were incubated with serum free medium alone; the effect of CORM-A1 
or resveratrol per se was also tested. Mean ± SEM of three independent experiments. *P < 0.05 vs. control. #P < 
0.05 vs. TNF-α/CHX alone. 

 

Double staining of MODE-K cells with two different mitochondria-specific dyes to distinguish 

actively respiring (MitoTracker Deep Red FM-positive) and total (MitoTracker Green FM-

positive) mitochondria showed an increase in the amount of respiration-interrupted  
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Fig. V.12   Effects of CORM-A1 (100 μM) or resveratrol (75 μM) on TNF-α (1 ng/ml)/CHX (10 µg/ml)-induced 
mitochondrial membrane depolarization (assessed with JC-10) in MODE-K cells measured by flow cytometry. 
Influence of TNF-α/CHX, incubated for 6 h, on mitochondrial membrane potential measured by flow cytometry 
(expressed as % of cells with polarized and depolarized mitochondria after JC-10 staining) in the absence and 
presence of CORM-A1 (A) or resveratrol (Res; B). Control cells were incubated with serum free medium alone; 
the effect of CORM-A1 or resveratrol per se was also tested. Mean ± SEM of three independent experiments. 
*P < 0.05 vs. control. #P < 0.05 vs. TNF-α/CHX alone. 
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mitochondria upon treatment of cells with TNF-α/CHX as compared to untreated control 

cells (46 ± 2% versus 4% ± 1% in P2 gated region; Fig. V.13B and D; third panel in Fig. V.13A 

and C). Treatment with CORM-A1 (Fig. V.13A and B) significantly decreased, while treatment 

with resveratrol (Fig. V.13C and D) abolished the TNF-α/CHX-induced increase in 

dysfunctional mitochondria, the level becoming lower than in control cells. 

Cellular oxygen consumption rate (OCR) was measured using a Seahorse XF96 

Analyzer to study the influence of CORM-A1 and resveratrol on TNF-α/CHX-treated MODE-K 

cells. Addition of TNF-α/CHX significantly decreased basal OCR within a few minutes of its 

administration and this decrease was maintained over time. Moreover, TNF-α/CHX increased 

the maximal respiration induced by the uncoupling agent CCCP without affecting non-

mitochondrial respiratory rate (Fig. V.14A and B; V.15A and B). CORM-A1 per se significantly 

decreased basal OCR but from 1.5 h after its administration OCR slowly recuperated. Just 

before adding CCCP the OCR was still lower than in control cells; both maximal respiration 

and non-mitochondrial respiration were decreased compared to control cells. In MODE-K 

cells, treated with TNF-α/CHX in the presence of CORM-A1, the OCR remained low till 

administration of CCCP; the maximal respiration was lower than in controls and in cells 

treated with TNF-α/CHX alone (Fig. V.14A and 15A). Resveratrol per se decreased basal OCR 

to a similar extent as CORM-A1 but this decrease was stable till administration of CCCP; 

maximal respiration was not influenced by resveratrol but minimal respiration was 

decreased compared to controls. In MODE-K cells, treated with TNF-α/CHX in the presence 

of resveratrol, OCR values were similar to those in cells treated with TNF-α/CHX alone, 

except that maximal respiration was now decreased compared to controls (Fig. V.14B and 

15B). 

V.5 Discussion 

Treatment of MODE-K cells with TNF-α/CHX induces apoptosis, which is associated 

with increased production of ROS. We previously found that CORM-A1 and resveratrol 

reduce both these effects (Babu et al., 2012). We have also recently identified that NOX and 

mitochondrial ETC complexes (I and II) are the major sources of ROS production during  

TNF-α/CHX-induced apoptosis (Babu et al., 2015). Here, we investigated the influence of  
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CORM-A1 and resveratrol on these pathways. The principal finding of this study is that 

CORM-A1 and resveratrol act on different sources of intracellular ROS production during 

their protection against TNF-α/CHX-induced cell death of MODE-K cells (see Table V.1 for a 

qualitative summary of the effects of CORM-A1 and resveratrol in basal conditions and 

versus TNF-α/CHX). 

V.5.1 Mechanism of action of CORM-A1 during TNF-α/CHX-induced oxidative stress in 

MODE-K cells 

Incubating MODE-K cells with 100 µM CORM-A1 from 1 h before exposure to  

TNF-α/CHX for 6 h partially reduced TNF-α/CHX-induced cell death. We previously reported 

that treatment of MODE-K cells with TNF-α/CHX induces a decrease in cellular oxygen 

consumption within 5 min of addition, a decrease in Ψm and an increase in mitochondrial 

dysregulation within 1 h of addition and an increase in intracellular total ROS and 

mitochondrial O2
 within 2 h of addition, the latter coinciding with the occurrence of 

apoptotic cell death (Babu et al., 2012; Babu et al., 2015). In several papers, the protection 

of cells by CO against oxidative insults has been related to inhibition of cytochrome c 

oxidase, the terminal enzyme within complex IV of the ETC, by competitive binding with 

oxygen resulting in a significant transient burst of mitochondria-derived ROS. The latter 

would create a state of preconditioning, inducing adaptive signaling towards subsequent 

oxidative stress (Taille et al., 2005; Chin et al., 2007; Zuckerbraun et al., 2007; Kim et al., 

2008). However, in MODE-K cells, 100 µM CORM-A1 did not change mitochondrial ROS or 

O2
 levels even in the first hours after administration; only a higher CORM-A1 concentration 

of 200 µM increased mitochondrial O2
 levels temporarily at 1-2 h of incubation.  

 

 

Fig. V.13   Effects of CORM-A1 (100 μM) or resveratrol (75 μM) on TNF-α (1 ng/ml)/CHX (10 µg/ml)-induced 
mitochondrial dysfunction in MODE-K cells measured by flow cytometry. A-D Influence of TNF-α/CHX, 
incubated for 6 h, on the amount of respiring mitochondria assessed with Mitotracker Green FM (FL1; FITC) 
and Mitotracker Deep Red FM (FL4; APC) staining in the absence and presence of CORM-A1 (A, B) or resveratrol 
(C, D). Control cells were incubated with serum free medium alone; the effect of CORM-A1 or resveratrol per se 
was also tested. A and C Representative dot plots of the flow cytometric analysis showing the effect of CORM-
A1 (A) or resveratrol (Res; C) on the population of cells (gated on live cells) losing mitochondrial potential and 
with respiration-interrupted mitochondria (shift of cell population towards P2 gated region) after treatment 
with TNF-α/CHX. B and D Quantification of flow cytometric measurements (expressed as % of cells with 
dysfunctional mitochondria) of CORM-A1 (B) and resveratrol (Res; D). Mean ± SEM of three independent 
experiments. *P < 0.05 vs. control. #P < 0.05 vs. TNF-α/CHX alone. 
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Fig. V.14   Acute effects of CORM-A1 (100 μM) or resveratrol (75 μM) on TNF-α (1 ng/ml)/CHX (10 µg/ml)-
induced decrease in mitochondrial respiration in MODE-K cells. Influence of TNF-α/CHX, incubated for 2 h, on 
cellular oxygen consumption rate (OCR, expressed as pmoles/min) in the absence and presence of CORM-A1 
(A) or resveratrol (B). CORM-A1 or resveratrol was incubated from 1 h before analysis of OCR. OCR was 
measured at different time points for 2.5 h. First, five consecutive measurements of respiration during 
incubation with medium alone were done for 30 min. Then, TNF-α/CHX was injected or not (control) followed 
by six consecutive measurements. At 115 min, the protonophore CCCP (50 μM) was added to measure maximal 
oxygen consumption for three measurements. At 130 min, the complex I inhibitor rotenone (2.5 μM) and the 
complex III inhibitor antimycin-A (5 μM) were injected, followed by three consecutive measurements to 
determine the non-mitochondrial respiration. Finally, the amount of viable cells (Hoechst+/PI- cells) in the 
microchamber of each well was determined by automated imaging. The data represent the average of five 
replicates for each condition. 
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Fig. V.15   Acute effects of CORM-A1 (100 μM) or resveratrol (75 μM) on TNF-α (1 ng/ml)/CHX (10 µg/ml)-
induced decrease in mitochondrial respiration in MODE-K cells. Influence of TNF-α/CHX, incubated for 2 h, on 
cellular oxygen consumption rate (OCR, expressed as pmoles/min) in the absence and presence of CORM-A1 
(A) or resveratrol (B). CORM-A1 or resveratrol was incubated from 1 h before analysis of OCR. OCR was 
measured at different time points for 2.5 h. First, five consecutive measurements of respiration during 
incubation with medium alone were done for 30 min. Then, TNF-α/CHX was injected or not (control) followed 
by six consecutive measurements. At 115 min, the protonophore CCCP (50 μM) was added to measure maximal 
oxygen consumption for three measurements. At 130 min, the complex I inhibitor rotenone (2.5 μM) and the 
complex III inhibitor antimycin-A (5 μM) were injected, followed by three consecutive measurements to 
determine the non-mitochondrial respiration. Finally, the amount of viable cells (Hoechst+/PI- cells) in the 
microchamber of each well was determined by automated imaging. OCR values are given for the 
measurements just before and after TNF-α/CHX administration (25 min and 32 min), for the measurement just 
before CCCP administration (111 min), for the second measurement after CCCP administration (124 min) and 
for the second measurement after administration of antimycin-A plus rotenone (142 min). A/R: Antimycin-A 
plus rotenone; TNF: TNF-α/CHX. * Significantly different from control. 
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Table V.1 Qualitative summary of the effects of CORM-A1 and resveratrol in basal conditions and versus  
TNF-α/CHX. 
 

 

 

Still, 100 µM CORM-A1 decreased cellular OCR in MODE-K cells with partial recuperation 

from this decrease from 90 min after its administration. In a previous study, a decrease in 

OCR was observed in isolated heart mitochondria treated with 100 µM CORM-3, while lower 

concentrations (1-20 µM) triggered an actual increase in OCR. However, the decrease in OCR 

with 100 µM CORM-3 was accompanied by inhibition of cytochrome c oxidase (complex IV) 

and increase in mitochondrial ROS production (Lo Iacono et al., 2011). In contrast, we did 

not observe an increase in mitochondrial ROS production with 100 µM CORM-A1 in MODE-K 

cells. The difference in these results could be due to the chemical reactivity of CORM-3 and 

CORM-A1, the first being a transition metal carbonyl releasing CO with a fast rate, whereas 

the second being a boranocarbonate that generates spontaneously CO at physiological pH 

with a slow kinetic (Motterlini et al., 2002; Motterlini et al., 2005). In addition, we cannot 

exclude that the different results obtained are due to differences in technology, as Lo Iacono 

et al. (2011) measured OCR in isolated mitochondria using a Clark-type oxygen electrode and 

different substrates, compared to the intact cells in growth medium used in our study where 

OCR was measured using the Seahorse XF96 Analyzer. One has speculated that the 

cytoprotective effects of CO are independent of mitochondrial ROS generation, but related 

to partial or temporal inhibition of mitochondrial respiration (Almeida et al., 2015). In 

HEK293 cells, both exogenous and endogenous CO were shown to reduce cellular respiration 

(D'Amico et al., 2006) and it was suggested that this might contribute to its cytoprotective 
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effects, as reported for NO (Xu et al., 2004). This might also explain why CORM-A1 partially 

recovered the decrease in Ψm and the increase in mitochondrial dysfunction by TNF-α/CHX 

observed in this study. 

Although CORM-A1 is not preconditioning MODE-K cells by inducing per se 

mitochondrial ROS, it has antioxidant potential in the cells as illustrated by the partial 

reduction of TNF-α/CHX-induced and H2O2-induced intracellular total ROS. Modulation of 

ROS production is considered to be a main mechanism of CO-mediated cytoprotection 

(Motterlini et al., 2012), the O2
 producing heme-containing proteins in mitochondria 

(cytochromes) and the NOX enzymes in the cells being the major targets of CO due to its 

higher affinity for heme (Foresti & Motterlini, 2010). In MODE-K cells, CORM-A1 was not able 

to reduce TNF-α/CHX-induced mitochondrial ROS or O2
 levels, excluding that this 

contributes to its partial protection from TNF-α/CHX-induced cytotoxicity. We previously 

showed that mitochondrial complexes I and II are the major mitochondrial ROS production 

sites during TNF-α/CHX-induced cell death in MODE-K cells (Babu et al., 2015). CORM-A1 did 

not influence mitochondrial O2
 induced by the complex I inhibitor rotenone probably 

because rotenone-induced mitochondrial ROS are released into the mitochondrial matrix 

(Chen et al., 2003; Rodriguez-Rocha et al., 2013). Still, CORM-A1 was able to reduce 

antimycin-A-induced mitochondrial O2
. Antimycin-A-derived mitochondrial O2

 is reported 

to be fully (St-Pierre et al., 2002) or at least partially (Han et al., 2003) released into the 

mitochondrial intermembrane space. As myxothiazole, the Qo site inhibitor of complex III, 

partially reduced TNF-α/CHX-induced total ROS and cell death in MODE-K cells (Babu et al., 

2015), part of TNF-α/CHX-induced ROS must also be released into the mitochondrial 

intermembrane space. The lack of any effect of CORM-A1 versus TNF-α/CHX-induced 

mitochondrial ROS might be related to near full use of CORM-A1 derived CO in the 

cytoplasm to counteract NOX-derived ROS upon exposure to TNF-α. The latter ROS 

production site is not activated by antimycin-A, so that sufficient CO might reach the 

mitochondrial intermembrane space upon exposure of MODE-K cells to antimycin-A. 

The partial reduction of TNF-α/CHX-induced intracellular total ROS by CORM-A1 is 

thus probably due to inhibition of NOX-derived ROS. In addition to mitochondrial complexes 

I and II, NOX are the second source of TNF-α/CHX-induced ROS, leading to apoptosis in 

MODE-K cells (Babu et al., 2015). CO has been reported to inhibit NOX and decrease 

cytoplasmic O2
 production (Bilban et al., 2006; Srisook et al., 2006; Wang et al., 2007; 
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Kelsen et al., 2008), probably by binding to the heme-containing gp91phox (NOX2) subunit 

with subsequent decrease in NOX activity (Taille et al., 2005; Nakahira et al., 2006). Similarly, 

CORM-A1 inhibited TNF-α-induced NOX activation and apoptosis in cerebral microvascular 

endothelial cells (Basuroy et al., 2009). As NOX are only one of the two major sources of 

TNF-α/CHX-induced ROS in MODE-K cells, and NOX activation might be sequential to 

mitochondrial ROS production (Babu et al., 2015), the inhibitory effect of CORM-A1 on NOX 

can only lead to partial reduction of TNF-α/CHX-induced cell death. 

V.5.2 Mechanism of action of resveratrol during TNF-α/CHX-induced oxidative stress in 

MODE-K cells 

In contrast to CORM-A1, resveratrol decreased the basal levels of both mitochondrial 

ROS and mitochondrial O2
 in MODE-K cells. Moreover, the more pronounced reduction in 

TNF-α/CHX-induced cell death by resveratrol accompanied by abolishment of mitochondrial 

ROS/O2
 levels implies that the inhibitory action of this polyphenol on mitochondria-derived 

ROS contributes to its anti-apoptotic/cytoprotective effects in MODE-K cells. Attenuation of 

mitochondrial oxidative stress with resveratrol was also reported in coronary arterial 

endothelial cells (Ungvari et al., 2009). Cytoprotection related to reduction of mitochondrial 

ROS has already been reported for several drugs (Reddy, 2006; Szeto, 2006; Plotnikov et al., 

2013) and a mitochondrial-targeted antioxidant has recently been shown to be beneficial in 

reducing intestinal epithelial barrier dysfunction (Wang et al., 2014). In addition to 

decreasing mitochondrial O2
 levels, resveratrol effectively prevented the TNF-α/CHX-

induced development of mitochondrial dysfunction and drop in Ψm in MODE-K cells. 

Resveratrol abolished both complex I- and complex III-induced ROS (as seen in experiments 

using rotenone and antimycin-A, respectively), which demonstrates the capacity of 

resveratrol in mitigating complex I and complex III-derived ROS. Owing to its lipophilicity, 

resveratrol might penetrate the mitochondrial matrix beyond the intermembrane space and 

thus could scavenge O2
 produced inside the matrix being available at the close proximity of 

O2
 generation. Additionally, resveratrol could induce an increased expression of 

mitochondrial superoxide dismutase (SOD)-2 as shown before in cultured neuronal cells 

(Fukui et al., 2010). 
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In contrast to decreasing mitochondrial ROS, resveratrol increased intracellular total 

ROS production in MODE-K cells. Although well known as an antioxidant, the pro-oxidant 

effects of resveratrol have been reported in some cell types (de la Lastral & Villegas, 2007) 

and it has been suggested that this can create an intracellular environment preventing 

apoptotic cell death (Ahmad et al., 2003). Resveratrol-induced ROS production in MODE-K is 

mediated through NOX1 (as evidenced by its abolishment in the presence of pan-NOX and 

Rac1 inhibitors), which is similar to its effect reported in endothelial cells (Schilder et al., 

2009). NOX-derived ROS production serves as a protective signal to increase the levels of 

intracellular antioxidant enzymes/scavenging molecules and has been implicated in stress-

induced preconditioning (Bell et al., 2005; Jiang et al., 2011; Frasier et al., 2013). The 

increase in the levels of NOX-derived ROS by pretreatment with resveratrol might exert such 

a “protective signaling” for MODE-K cells to raise their antioxidant defense to protect 

themselves from the successive cytokine (TNF-α) effect. Notably, resveratrol was shown in 

cultured hepatocytes to increase the activity of several antioxidant enzymes such as catalase 

and SOD via activation of nuclear factor-E2-related factor-2 (Rubiolo et al., 2008). NOX-

derived ROS has also been shown to play a role in epithelial cell proliferation (Brar et al., 

2002; Ranjan et al., 2006). The role of NOX1-dependent ROS generation during proliferation 

of mouse small intestinal (Jones et al., 2013) and colonic epithelium (Coant et al., 2010) has 

been recently proposed. Hence, it seems plausible that ROS generation resulting from pre-

treatment of MODE-K cells with resveratrol before exposure to TNF-α/CHX might have 

activated the proliferative machinery to defend against the successive stress insult. 

We suggested that treatment of MODE-K cells with TNF-α/CHX might involve an early 

phase of mitochondria-derived ROS production inducing a later phase of NOX-derived ROS 

production as mitochondrial complex inhibitors show a more pronounced decrease in total 

ROS levels and cell death as compared to the moderate effect of the NOX inhibitor,  

VAS-2870 (Babu et al., 2015). The pronounced cytoprotective effect of resveratrol 

concomitant with the abolishment of mitochondrial ROS/O2
, as compared to the moderate 

NOX-dependent cytoprotection observed with CORM-A1, further strengthens the notion of a 

possible sequential communication from mitochondria to NOX for ROS production in  

MODE-K cells. 
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In conclusion, the cytoprotective effect of resveratrol is predominantly due to 

mitigation of mitochondrial ROS while CORM-A1 acts solely on NOX-derived ROS to protect 

MODE-K cells from TNF-α/CHX-induced cell death. These data infer that interference of 

CORM-A1 and resveratrol with particular intracellular ROS production sites could have some 

therapeutic value and therefore should be further tested for the treatment of acute GI 

inflammatory diseases. 
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Chapter VI   General discussion and conclusions 

 
Intestinal epithelial barrier dysfunction is involved in several acute GI inflammatory 

disease conditions such as POI and NEC. By intestinal epithelial barrier dysfunction, the gut 

can be a triggering factor in the progression of sepsis. The progression of sepsis to severe 

sepsis with MOF and to septic shock is related to an inflammatory/oxidative cascade 

involving production of inflammatory cytokines and ROS, I/R injury and mitochondrial 

dysfunction. Oxidative stress and inflammation can lead to disturbance of the intestinal 

epithelial barrier, accompanied by sepsis-induced ileus and allowing luminal bacterial 

content to penetrate in the body and aggravate the systemic inflammation. Several studies 

support that TNF-α, secreted by IECs themselves and by activated macrophages, is central to 

intestinal epithelial injury (Hausmann, 2010; Roulis et al., 2011). Apart from its pro-

inflammatory actions, there is also evidence that TNF-α increases oxidative stress in a variety 

of different cells (Shen & Pervaiz, 2006; Jin et al., 2008). In a murine model of POI, a 

condition classically related to a muscular inflammatory reaction to the manipulation of the 

intestine, our laboratory has shown an increase in oxidative stress after intestinal 

manipulation occurring both in the mucosa and in the muscular layer, the increase in the 

mucosa in the early phase being more pronounced than in the muscular layer (De Backer et 

al., 2009). This suggests that early epithelial oxidative stress, possibly inducing increased 

intestinal permeability, might contribute to the pathogenesis of POI. HO-1 is upregulated by 

oxidative stress and inflammatory mediators, and confers protection against oxidative stress 

and inflammation. This effect is mainly related to the products generated from the 

enzymatic activity of HO-1 i.e. biliverdin/bilirubin and still more CO. Several cytoprotective 

agents have been proposed to at least partially act via HO-1 induction; a frequently studied 

example between these agents is the polyphenol resveratrol. The aim of this thesis was 

therefore to establish an in vitro IEC model to assess the relation between TNF-α-induced 

oxidative stress and cell death, and to investigate the protective effects of HO-1-derived 

products, for CO using CO-RMs, and of resveratrol. 

The murine IEC line MODE-K was used as it is a non-cancerous cell line derived from 

duodenum-jejunum of a normal mice bearing the characteristic features of normal 
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enterocytes (Vidal et al., 1993). Additionally, data obtained with this cell line might be useful 

for targeted investigation in a murine in vivo model such as POI in subsequent projects. 

Preliminary experiments with TNF-α were done by testing its influence on cell viability. As in 

the case of many cell lines, including the GI ones (Beyaert et al., 1993; Bhattacharya et al., 

2003; Pajak et al., 2005; Minero et al., 2013), we have found that TNF-α requires the 

combination with CHX to reduce cell viability in MODE-K cells. TNF-α is a pleiotropic cytokine 

that not only rapidly accelerates cell death, but also induces survival signals probably via 

activating the transcription factor NF-kB (Hayden & Ghosh, 2014). Addition of CHX 

suppresses the synthesis of short-lived cytoprotective proteins and blocks these protein 

synthesis-mediated survival effects. Therefore, the combination TNF-α/CHX was selected for 

further investigation. 

Primary experiments involving treatment of MODE-K cells with 20 ng/ml TNF-α plus 

25 µg/ml CHX, a classic cytotoxic apoptotic stimulus used in other IEC lines (Bhattacharya et 

al., 2003; Naugler et al., 2008; Greenspon et al., 2009), decreased the cell viability to 10% of 

untreated cells. Moreover, this pronounced effect on cell viability was not influenced by any 

of the HO-1-related products. Treatment with 0.1 and 1 ng/ml TNF-α plus 10 µg/ml CHX 

decreased the cell viability to 50% and 20%, respectively. These results suggest that the 

MODE-K cell line is highly sensitive to the cytotoxic effects of TNF-α/CHX. 

VI.1  Relation between TNF-α/CHX-induced oxidative stress and apoptotic cell death in 

MODE-K cells 

Exposure of MODE-K cells to 0.1, 0.25, 0.5 and 1 ng/ml TNF-α plus 10 µg/ml CHX for  

6 h decreased cell viability, increased caspase-3/7 activity and increased the number of 

apoptotic cells in a concentration-dependent manner. When incubated for 3 h, 0.1-1 ng/ml 

TNF-α plus 10 µg/ml CHX increased the intracellular ROS levels in a concentration-dependent 

manner as assessed with the most commonly used oxidant-sensitive fluorescent probe 

carboxy-H2DCFDA. When investigating the time dependency of 1 ng/ml TNF-α plus 10 µg/ml, 

apoptosis started after 2 h of treatment with TNF-α/CHX corresponding with the onset of 

ROS production. The concentration-dependent induction of apoptosis by TNF-α/CHX at 6 h 

accompanied by a corresponding increase in caspase-3/7 activity suggests that a sequence of 

“ROS production → caspase-3/7 activity → apoptosis” might occur in MODE-K cells, similarly 
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as reported in rat IEC-6 cells (Jin et al., 2008). The quantitation of apoptosis involved 

measurement of DNA hypoploidy after PI staining by flow cytometry while the quantitation 

of ROS production involved the measurement of fluorescence after carboxy-H2DCFDA 

staining in wells of a microtiter plate reader, the fluorescence being contributed by both live 

and dead cells. 

In the second project, intracellular ROS generation (by use of carboxy-H2DCFDA) and 

cell death (by use of Sytox Red) were therefore measured simultaneously by flow cytometry, 

allowing selective measurement of ROS fluorescence in viable cells. This assay confirmed the 

concentration-dependent effect of 0.1, 0.25, 0.5 and 1 ng/ml TNF-α plus 10 µg/ml CHX on 

ROS production and cell death, as well as the time dependency for 1 ng/ml TNF-α plus  

10 µg/ml CHX, with ROS increase and cell death both starting from 2 h of exposure. By use of 

annexin V and PI staining, it was illustrated again that TNF-α/CHX-induced cell death 

followed apoptotic kinetics, early apoptotic cells occurring from 2 h of exposure. 

The onset of ROS production by TNF-α at 2 h in MODE-K cells is in apparent contrast 

with the rapid onset of ROS production at earlier time points observed in IECs from rat 

origin, i.e., 15 min in RIE-1 (Baregamian et al., 2009) and 20 min in IEC-6 (Jin et al., 2008) 

cells. Of note, MODE-K cells showed a significant increase in ROS production only when 

treated with a high concentration of exogenous H2O2 (0.5 mM) for a period of 40 min 

suggesting that MODE-K cells are highly resistant to the initial burst of oxidative stress by 

H2O2. These results suggest that the mouse IECs have the capacity to counteract the initial 

burst of oxidative stress up to a threshold time, beyond which the antioxidant defense can 

no longer be maintained and apoptotic cell death starts. 

The significant reduction of both total ROS and cell death induced by TNF-α/CHX by a 

variety of antioxidants (like BHT, BHA, NAC and tiron) implies that ROS production 

contributes to TNF-α/CHX-induced cell death in MODE-K cells. The lipophilic antioxidants like 

BHT and BHA showed a more pronounced effect in decreasing TNF-α/CHX-induced ROS 

production and cell death as compared to the hydrophilic antioxidant NAC; these results 

suggest that the ROS produced might be predominantly released in the hydrophobic 

compartment of the mitochondrial membrane. This is corroborated by the lack of effect of 

the water-soluble mitochondria-targeted antioxidant Mito-TEMPO on both TNF-α/CHX-

induced ROS production and cell death. 
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Each of the ROS species is a distinct chemical entity with its own reaction 

preferences, kinetics, rate and site of production, degradation and diffusion characteristics in 

biological systems. So, in biomedical research investigations, specifying the particular ROS 

thought to be responsible for the observed biological effect(s) with the direct measurement 

of a particular ROS would help in better understanding of the redox signaling under 

consideration (Murphy et al., 2011). In this thesis, the abolishment of TNF-α/CHX-induced 

ROS production by iron chelators (DFO and SIH) without any effect on cell death excludes 

OH as the specific ROS causing TNF-α/CHX-induced cell death of MODE-K cells. The 

concentration-dependent increase in ROS production by TNF-α at 3 h was not paralleled by 

the decrease in the antioxidant GSH level; the latter occurred only at 6 h. Reduced GSH in 

mitochondria is the only antioxidant defense mechanism available to neutralize peroxides 

generated from the ETC through the GSH redox pool (Fernandez-Checa et al., 1998). The 

decrease in GSH levels occurring only at 6 h suggests that ROS production in the form of 

H2O2 only starts after 3 h of TNF-α/CHX exposure, with other forms of ROS in particular O2
 

being involved in the earlier apoptosis observed already from 2 h of exposure to TNF-α/CHX 

in MODE-K cells. 

VI.2  Sources of TNF-α/CHX-induced oxidative stress in MODE-K cells 

Activation of NOX, dysregulation of mitochondrial oxidative phosphorylation, the 

interaction xanthine/xanthine oxidase and uncoupled eNOS are the endogenous sources of 

ROS production in eukaryotic cells. A contribution of eNOS to TNF-α/CHX-induced oxidative 

stress in MODE-K cells can be excluded as it is not expressed in IECs (Chen et al., 2002; Konig 

et al., 2002). The lack of effect of allopurinol on both the TNF-α/CHX-induced ROS 

production and cell death excludes xanthine oxidase as a possible source of ROS production 

in MODE-K cells. NOX1 and DUOX1/2 are the three NOX isozymes present in the mouse 

small intestinal epithelium (Bedard & Krause, 2007; Jones et al., 2013). During the screening 

study, the classical inhibitors of NOX (apocynin and DPI) showed differential effects on the 

TNF-α/CHX-induced decrease in cell viability. DPI reduced TNF-α-induced cytotoxicity at  

0.1-0.5 ng but not at 1 ng TNF-α/CHX, while apocynin failed to influence the decrease in cell 

viability at all tested concentrations of TNF-α. The differential effect of apocynin and DPI 

does not exclude the involvement of NOX during TNF-α/CHX-induced ROS production in 
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MODE-K cells as apocynin was not effective in inhibiting NOX activity in certain cell types 

(Aldieri et al., 2008). In the flow cytometric study, DPI was again found to not influence cell 

death (and also ROS production) by 1 ng TNF-α/CHX, but the decrease in the level of  

TNF-α/CHX-induced ROS production by the recently developed and well-validated pan-NOX 

inhibitor VAS-2870 indicates that NOX enzymes also contribute to ROS production by TNF-α 

in MODE-K cells. This is further corroborated by a relatively similar effect of NSC23766 to 

that of VAS-2870, implying that Rac1 mediated activation of NOX isozymes partly contributes 

to TNF-α/CHX-induced ROS production in MODE-K cells. This is in agreement with a study in 

rat IEC-6 cells (Jin et al., 2008). 

Mitochondria have been implicated as the principal source of ROS generation 

required for TNF-α-induced cytotoxicity of a variety of cells like mouse fibroblasts (Schulze-

Osthoff et al., 1993; Kamata et al., 2005), human cervical adenocarcinoma cells (Kim et al., 

2010), macrophages (Roca & Ramakrishnan, 2013), neonatal rat ventricular myocytes 

(Suematsu et al., 2003), liver cells (Kastl et al., 2014), endothelial cells (Deshpande et al., 

2000; Corda et al., 2001), cardiomyocytes (Roberge et al., 2014) and IECs (Jin et al., 2008; 

Baregamian et al., 2009). A growing body of evidence suggests that ROS are physiologically 

generated at the level of complexes I and III of the mitochondrial respiratory chain. The 

involvement of different complexes of the respiratory chain in ROS-dependent signaling is 

cell type-dependent and stimulus-specific (Liu & Schubert, 2009; Kastl et al., 2014). In the 

current study, the effects of the various inhibitors of the mitochondrial ETC complexes 

revealed the complex nature of ROS production in living MODE-K cells. The pronounced 

decrease in TNF-α/CHX-induced ROS production and cell death by amytal and TTFA suggests 

that the quinone binding sites of complexes I and II might be major mitochondrial 

contributors to ROS production during TNF-α/CHX-induced cell death. Interestingly, complex 

II was reported to contribute to hypoxia-induced ROS generation (Paddenberg et al., 2003) 

and oxidative stress with associated tissue damage (Ralph et al., 2011). Since treatment of 

MODE-K cells with TNF-α/CHX quickly induces decreased mitochondrial oxygen 

consumption, a similar mechanism as occurring during hypoxia could develop and 

contribution of complex II-induced ROS might come into play. Reverse electron transport 

from complex II to complex I is proposed to be a major pathway for mitochondrial ROS 

production during conditions involving oxidative stress (Drose, 2013). Correspondingly, in 

MODE-K cells, treatment of TTFA abolished TNF-α/CHX-induced ROS production suggesting 
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that the blockade of complex II at the Qp site by TTFA leads to a reduction of complex I 

related ROS production, generated by reverse electron transfer from complex II to complex I. 

Additionally, the partial reduction of TNF-α/CHX-induced ROS and cell death by myxothiazole 

indicates that the Qo site of complex III is also involved in TNF-α-induced ROS production. 

The partial reduction in TNF-α/CHX-induced ROS and cell death levels by cyanide and 

oligomycin implies that complex IV and V also participate in ROS production by TNF-α/CHX in 

MODE-K cells. As complex IV and V are not direct ROS production sites, the observed effect 

might probably be related to an indirect regulatory influence of complex IV and V on ROS 

production from the mitochondria. Similarly, the partial reduction of TNF-α/CHX-induced 

ROS and cell death levels by the proton ionophores CCCP and FCCP underlines the 

significance of the “uncoupling to survive” theory where “mild mitochondrial uncoupling” 

has been proposed to induce a protective antioxidant defense mechanism preventing cell 

death (Skulachev, 1996; Brand, 2000; Mailloux & Harper, 2011). In contrast to other 

mitochondrial complex inhibitors, inhibition of the Qi site of complex III with antimycin failed 

to inhibit TNF-α/CHX-induced ROS generation and cell death, excluding that O2
 released 

from the Qi site of complex III towards the matrix contributes to TNF-α/CHX-induced ROS 

production in MODE-K cells. 

To gain further insight, we have assessed the contribution of mitochondrial ROS with 

MitoSOX Red to directly measure the primary species of intra-mitochondrial ROS, O2
. 

Indeed, TNF-α/CHX increased the levels of mitochondrial O2
 anion in MODE-K cells in a 

concentration-dependent manner. The onset of mitochondrial O2
 production also occurs at 

2 h after exposure to TNF-α/CHX, the same time at which apoptotic cell death starts. This is 

in agreement with the involvement of mitochondrial ROS during TNF-α-induced ROS 

production in rat IECs reported previously (Jin et al., 2008; Baregamian et al., 2009). The 

contribution of complexes I and II to TNF-α/CHX-induced mitochondrial ROS production was 

confirmed by the observation that amytal and TTFA also decreased TNF-α/CHX-induced 

mitochondrial O2
 production. 

Mitochondria play a critical role in cell survival as they are the main cellular sites 

controlling metabolism, cell cycle and apoptosis. Moreover, generation of ROS during 

apoptosis leads to mitochondrial damage associated with decreased Ψm. Treatment of 

MODE-K cells with TNF-α/CHX induced an increase in cells with depolarized mitochondria 

and increased the amount of respiration-interrupted mitochondria in a concentration- and 
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time-dependent manner. Additionally, our findings that treatment of MODE-K cells with 

TNF-α/CHX causes a rapid decrease in cellular oxygen consumption creating a hypoxic state 

(within 5 min of addition) and a decrease in Ψm (occurring within 60 min) and mitochondrial 

dysregulation (starting at 60 min) at earlier time points than ROS production and cell death 

(starting at 2 h), suggests that there could be a sequential link between these events. 

Taken together, NOX and mitochondria are the major sources of TNF-α/CHX-induced 

oxidative stress in MODE-K cells. 

VI.3  Influence of HO-1-derived products and resveratrol on TNF-α-induced oxidative 

stress and apoptotic cell death 

HO-1 serves as a cytoprotective gene by virtue of its potent antioxidant, anti-

apoptotic and anti-inflammatory properties, all attributed to the catalytic by-products of 

heme metabolism, namely, CO, biliverdin/bilirubin and iron/ferritin. Although HO-1 does not 

have a direct antioxidant enzymatic function, HO-1 and its product CO are believed to have 

indirect cytoprotective effects against oxidative stress (Vile et al., 1994; Otterbein & Choi, 

2000). However, studies to understand HO-1’s potential in treating ROS-induced GI diseases 

are still in their infancy (Bhattacharyya et al., 2014). Accumulating evidence indicates that 

CO mediates many of the biological functions of HO-1. The use of water soluble CO-RMs, 

CORM-3 and CORM-A1, with different CO-release kinetics that enable delivery of CO in a 

controllable manner could be of potential clinical utility for treatment of acute GI disorders 

like POI (De Backer et al., 2009). So, the influence of the HO-1 related protective compounds 

(CORM-A1, CORM-3, biliverdin and bilirubin) was tested on the effects of the different 

concentrations of TNF-α plus CHX, on cell viability, oxidative stress (ROS and GSH levels) and 

apoptosis (caspase-3/7 activity and DNA hypoploidy). CORM-A1 seems to be the most 

promising protective agent among the tested compounds. The highest non-cytotoxic 

concentration of CORM-3 and CORM-A1 reduced the decrease of cell viability by TNF-α at all 

tested concentrations (0.1-1 ng TNF-α), while 100 µM bilirubin and 1 µM biliverdin had no 

influence. However, a lower concentration of 1 µM bilirubin partially prevented the decrease 

in cell viability by 0.1 and 0.25 ng/ml TNF-α plus CHX (10 µg/ml). Bilirubin (1 µM) partially 

reduced ROS production and caspase-3/7 activity by 1 ng/ml TNF-α plus 10 µg/ml CHX, but 

failed to prevent TNF-α/CHX-induced apoptosis. A similar effect of bilirubin with only mild 
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reduction in TNF-α/CHX-induced apoptosis despite having a pronounced effect on caspase-3 

expression was already reported in cerebral vascular endothelial cells (Basuroy et al., 2006). 

These results suggest that a caspase-independent pathway of apoptosis might also be 

involved during TNF-α/CHX-induced cell death of MODE-K cells. Correspondingly, caspase-

independent apoptosis signaling of TNF-α has been reported in many different cell types 

including colonic IECs (Jones et al., 2000; Wilson & Browning, 2002; Chen et al., 2005; 

Alvarez et al., 2011). 

Low levels of HO-1 are expressed in the normal GI tract (Coeffier et al., 2002; Barton 

et al., 2003). In the GI tract, expression of HO-1 is increased in an experimental model of POI 

with surgical intestinal manipulation (De Backer et al., 2009) and models of sepsis by an i.p. 

injection of LPS (Otani et al., 2000), implying induction of HO-1 during stress conditions. 

However, in MODE-K cells, the baseline HO-1 protein level was decreased by treatment with 

TNF-α/CHX; this could at least partially be due to the presence of the protein synthesis 

inhibitor CHX. None of the previous investigations, where combination of TNF-α with CHX 

was used to induce cell death, investigated HO-1 expression (Beyaert et al., 1993; 

Bhattacharya et al., 2003; Pajak et al., 2005; Minero et al., 2013). In studies where TNF-α 

was used alone as an inflammatory trigger and not an apoptotic trigger, opposite effects 

have been obtained. In human chondrocytes (Fernandez et al., 2003) and peripheral blood 

mononuclear cells (Kirino et al., 2007), the expression of HO-1 protein was also decreased by 

TNF-α, similar to what we observed in our study. However, in human endothelial and 

monocytic cell lines, such as U937 and THP-1 (Muraosa & Shibahara, 1993; Terry et al., 1998; 

Terry et al., 1999; Udono-Fujimori et al., 2004; Liang et al., 2013), upregulation of HO-1 

expression by TNF-α was reported. The reason for this difference is not clear. 

Resveratrol showed the highest degree of cytoprotection against all tested 

concentrations of TNF-α/CHX. Resveratrol fully abolished TNF-α/CHX-induced ROS 

production and caspase-3/7 activity while only halving of TNF-α/CHX-induced apoptosis; 

these results further corroborate that TNF-α/CHX-induced apoptosis of MODE-K cells can 

occur via a ROS- and caspase-independent pathway. Apoptosis inducing factor (AIF) is a 

mammalian, caspase-independent death effector which, upon apoptosis induction, 

translocates from the mitochondria to the nucleus, causing chromatin condensation and 

DNA fragmentation (Cregan et al., 2004). Treatment of rat RIE-6 cells with TNF-α was 
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reported to increase AIF expression (Baregamian et al., 2009); a similar involvement of 

caspase-independent apoptotic induction by TNF-α might also exist in MODE-K cells. 

Given the contribution of ROS production in TNF-α/CHX-induced apoptosis in  

MODE-K cells, with CORM-A1 and resveratrol reducing both these effects, the antioxidant 

mechanism of these two agents was subsequently studied. 

VI.4  Mechanism of action of CORM-A1 during TNF-α/CHX-induced oxidative stress in 

MODE-K cells 

Treatment of MODE-K cells with 100 µM CORM-A1 partially reduced TNF-α/CHX-

induced cell death. The heme-containing proteins in mitochondria (cytochromes) and the 

NOX enzymes are the major cellular targets of CO due to its higher affinity for heme (Foresti 

& Motterlini, 2010). CO can partially and/or reversely inhibit cytochrome c oxidase (complex 

IV), leading to electron accumulation at complex III level, which facilitates O2
 generation. 

Such an induction of a mild transient burst of mitochondrial ROS by CO resulting in adaptive 

signaling (“ROS-induced preconditioning”) towards subsequent oxidative insults is one of the 

most unified mechanisms proposed for the cytoprotective effect of CO (Queiroga et al., 

2012). However, the lack of induction of mitochondrial O2
 during the initial hours of 

incubation of MODE-K cells with 100 µM CORM-A1 implies that the antioxidant effect of 

CORM-A1 does not involve preconditioning through induction of a mitochondrial ROS burst. 

Still, there has been speculated that the cytoprotective effects of CO can be independent of 

mitochondrial ROS generation, but could be attributed to partial or temporal inhibition of 

mitochondrial respiration (Almeida et al., 2015). Correspondingly, 100 µM CORM-A1 

decreased cellular OCR in MODE-K cells with partial recuperation from this decrease from 90 

min after its administration. This observation is in agreement with a finding in HEK293 cells 

showing reduced cellular respiration upon exposure to exogenous CO, which was suggested 

to contribute to cytoprotective effects of CO (D'Amico et al., 2006). Moreover, one has 

recently speculated that CO can alter O2 sensing and exert a “pseudo-hypoxic” state, 

providing a powerful cellular impact towards regeneration and increasing the cellular energy 

supply, thus leading to improved survival in the presence of cell stress and injury (Schallner 

& Otterbein, 2015). A similar effect on mitochondrial respiration might also explain the 
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partial recovery by CORM-A1 of the decrease in Ψm and the increase in mitochondrial 

dysfunction by TNF-α/CHX in MODE-K cells. 

CORM-A1 partially reduced TNF-α/CHX-induced and H2O2-induced intracellular total 

ROS illustrating its antioxidant potential. Mitochondrial complexes I and II are identified to 

be the major mitochondrial ROS production sites during TNF-α/CHX-induced cell death in 

MODE-K cells. CORM-A1 did not affect the mitochondrial O2
 production induced by 

rotenone, the complex I inhibitor, which could be attributed to the fact that rotenone-

induced mitochondrial ROS are released into the mitochondrial matrix (Chen et al., 2003; 

Rodriguez-Rocha et al., 2013). Still, CORM-A1 could partially reduce antimycin-A-induced 

mitochondrial O2
, which are reported to either fully (St-Pierre et al., 2002) or at least 

partially (Han et al., 2003) be released into the mitochondrial intermembrane space. 

However, CORM-A1 failed to influence TNF-α/CHX-induced mitochondrial ROS or O2
 level, 

excluding that modulation of mitochondrial ROS contributes to its partial protection from 

TNF-α/CHX-induced cytotoxicity. Inhibition of NOX is an additional and intriguing mechanism 

by which CO could modulate redox signaling (Boczkowski et al., 2006). Several studies 

indicate that CO may directly inhibit NOX activity, probably by binding to the heme-

containing gp91phox/Nox2 subunit, and thus can reduce ROS generation (Taille et al., 2005; 

Matsumoto et al., 2006; Nakahira et al., 2006; Wang et al., 2007). The partial reduction of 

TNF-α/CHX-induced intracellular total ROS by CORM-A1 is thus probably due to inhibition of 

NOX-derived ROS. Moreover, the full use of CORM-A1-derived CO in the cytoplasm to 

counteract NOX-derived ROS upon exposure to TNF-α might be the plausible reason for the 

lack of any effect of CORM-A1 against TNF-α/CHX-induced mitochondrial ROS production. As 

NOX enzymes are not involved in the ROS production by antimycin-A, sufficient CO derived 

from CORM-A1 might have reached the mitochondrial intermembrane space upon exposure 

of MODE-K cells to antimycin-A; this might explain why CORM-A1 could partially reduce 

antimycin-A-induced mitochondrial O2
. 

Exogenous CO in the form of CORMs was reported to exert its protective effects 

through induction of HO-1 in many cell types like murine macrophages (Sawle et al., 2005), 

mouse kidney tissue (Vera et al., 2005), human and rat hepatocytes (Lee et al., 2006), and 

rat endothelial cells (Rodella et al., 2006). Moreover, the induction of HO-1 can provide a 

positive feedback loop (CO→ induction of HO-1→ more CO→ further induction of HO-1) 

resulting in the formation of biliverdin/bilirubin exerting ROS scavenging properties (Rodella 
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et al., 2006). However, in MODE-K cells, treatment with CORM-A1 did not induce HO-1 

expression excluding the possibility that endogenous HO-1 induction contributes to the anti-

apoptotic effect of CORM-A1 in MODE-K cells. 

VI.5  Mechanism of action of resveratrol during TNF-α/CHX-induced oxidative stress in 

MODE-K cells 

While resveratrol interacts with many important enzymes and receptor signaling 

pathways, the antioxidant properties of resveratrol are of particular interest because of the 

fundamental role that oxidative stress plays in numerous pathological conditions. In contrast 

to CORM-A1, the antioxidant potential of resveratrol in IECs has been previously identified in 

two studies but the mechanism remains unknown (Elamin et al., 2013; Serra et al., 2014). In 

the primary screening experiments using the fluorescence plate reader, resveratrol per se 

did not influence the basal ROS level while it abolished the TNF-α/CHX-induced increase in 

ROS production when measured after 3 h of apoptotic stimulus. However, in the 

experiments using the flow cytometer, resveratrol per se increased total ROS with only 

partial reduction of TNF-α/CHX-induced total ROS production measured after 6 h of 

apoptotic stimulus. This discrepancy could be attributed to the differences in technology, 

time point of measurement, contribution of dead cells to the ROS signal along with the type 

of ROS contributing to the fluorescence, and experimental steps involved (washing of the 

cells with HBSS before carboxy-H2DCFDA loading in the cell culture plate for the plate reader 

measurement versus co-incubation of the dye with the cells without washing the cell culture 

plate in the flow cytometric analysis). Based on the flow cytometric measurements, 

resveratrol abolished TNF-α/CHX-induced mitochondrial ROS/O2
 production with a 

pronounced reduction of TNF-α/CHX-induced cell death; this suggests that inhibition of 

mitochondria-derived ROS contributes to the cytoprotective/anti-apoptotic effects of 

resveratrol in MODE-K cells. Additionally, resveratrol effectively prevented TNF-α/CHX-

induced mitochondrial dysfunction and drop in Ψm in MODE-K cells. Moreover, resveratrol 

abolished both rotenone- and antimycin-A-induced ROS showing the potential of resveratrol 

in mitigating both complex I and complex III-derived ROS. All these effects of resveratrol with 

regard to the mitochondrial parameters could be attributed to the lipophilic nature of 

resveratrol enabling it to traverse through the mitochondrial intermembrane space and 
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reach the matrix, allowing scavenging of O2
 produced inside the matrix, immediately after 

its generation. Indeed, resveratrol was previously shown to suppress the formation of O2
 

produced by murine resident peritoneal macrophages stimulated by LPS or phorbol esters 

(Martinez & Moreno, 2000). Even though resveratrol was known for its OH scavenging 

potential, it seems unlikely that resveratrol could act through this mechanism as we have 

previously identified that OH is not the ROS entity contributing to TNF-α/CHX-induced cell 

death in MODE-K cells. 

With regard to the antioxidant defense, resveratrol can decrease oxidative stress 

through induction of MnSOD and HO-1 (Ungvari et al., 2009; Ryan et al., 2010; Kairisalo et 

al., 2011). Resveratrol per se increased basal HO-1 protein expression in MODE-K cells, but it 

did not prevent the decrease by TNF-α/CHX, excluding HO-1 induction as the mechanism of 

action for its protective effect against TNF-α/CHX. 

In recent years, it became evident that ROS are not only byproducts of cellular 

metabolism but also can act as second messengers to activate signaling pathways and hence 

lead to alterations in gene expression to regulate cellular functions. Contrary to decreasing 

mitochondrial ROS, resveratrol increased intracellular total ROS production in MODE-K cells, 

but still could decrease TNF-α/CHX-induced cell death. NOX1 seems to be the sole ROS 

production site of resveratrol in MODE-K cells as demonstrated by the abolishment of ROS 

by pan-NOX and Rac1 inhibitors. NOX-derived ROS production has been identified to exert 

stress-induced preconditioning with induction of antioxidant enzyme levels (Bell et al., 2005; 

Jiang et al., 2011; Frasier et al., 2013); the increase in the NOX-derived ROS levels by 

pretreatment with resveratrol might have induced a similar “preconditioning” effect in 

MODE-K cells to protect themselves from the successive cell death trigger (TNF-α/CHX). 

Interestingly, the mitochondrial complex I and II inhibitors showed a more 

pronounced effect in decreasing total cellular ROS and cell death as compared to the 

moderate effect of the NOX inhibitor VAS-2870; this might suggest that early ROS signaling 

from mitochondria can induce a later phase of NOX-derived ROS. Notably, resveratrol 

showed a pronounced cytoprotective effect against TNF-α/CHX concomitant with the 

abolishment of mitochondrial ROS/O2
, while the inhibitory effect of CORM-A1 on NOX only 

led to partial reduction of TNF-α/CHX-induced cell death. These results together reinforce 

the possibility of sequential communication from mitochondria to NOX for ROS production in 

MODE-K cells. 
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A schematic overview of the intracellular sources of ROS production induced by  

TNF-α along with the sites of ROS production influenced by CORM-A1 and resveratrol in 

MODE-K cells is shown in Fig. VI.1. 

 

 

Fig. VI.1    Schematic overview of the intracellular sources of ROS production induced by TNF-α along with the 
sites of ROS production influenced by CORM-A1 and resveratrol in MODE-K cells. Binding of TNF-α to its 

receptor TNFR1 results in formation of O2
 from mitochondrial complexes I, II and III, and NOX. CORM-A1 

reduces TNF-α-induced total ROS production through inhibition of NOX with partial reduction of antimycin-A-

induced mitochondrial O2
 (influence of antimycin-A is not shown for clarity). Resveratrol per se induced total 

ROS production, mediated through NOX activation. Resveratrol abolished TNF-α-induced mitochondrial O2
 

production. Resveratrol also abolished mitochondrial O2
 production from complexes I and III induced by 

rotenone and antimycin-A, respectively (not shown for clarity). 

VI.6  Future perspectives 

Although primary IECs can be prepared with high purity from intestinal tissue, their 

short survival in culture precludes their use in functional ex vivo studies (Bjerknes & Cheng, 

1981; Cano-Gauci et al., 1993; Lotz et al., 2006). MODE-K is the most widely used mouse 

small IEC line in several research investigations in the literature to understand small 

intestinal mucosal pathophysiology, however, this cell line still suffers with the limitation 

that it does not develop measurable transepithelial resistance when grown in cultures (Iliev 

et al., 2009). So, our findings with TNF-α toxicity and ROS generation in MODE-K cells should 

be ideally reassessed in another cell line like IEC-1, a recently established murine IEC line 
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bearing many functional features of the intestinal epithelium including the generation of 

increasing transepithelial electrical resistance during in vitro culture (Schwerk et al., 2013). 

Following this, the effect of TNF-α/CHX in increasing the epithelial barrier permeability 

should be evaluated in IEC-1 cells both in the absence and presence of specific ROS inhibitors 

to strengthen the hypothesis that TNF-α-induced ROS production contributes to epithelial 

barrier dysfunction. The participation of mitochondrial ROS in TNF-α-induced cell death can 

be confirmed at the genetic level by using mtDNA-depleted ρ° cells generated from IEC-1 

cells. In the present study, the involvement of mitochondrial complex I, the primary site of 

electron entry in the ETC, in TNF-α-induced mitochondrial ROS generation, has been 

identified based on pharmacological intervention. This finding should be investigated by a 

genetic approach with silencing of NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 8 (NDUFB8), a mitochondrial complex I subunit, using siRNA; this should prevent the 

induction of ROS from mitochondria upon TNF-α exposure in MODE-K cells. The involvement 

of NOX in TNF-α-induced ROS production can also be assessed by performing studies with 

siRNA for NOX1 along with measurement of NOX activity. The ROS assessments after each of 

the above silencing experiments also would help to understand the proposed crosstalk 

between mitochondria and NOX. The mechanism of action of CORM-A1 through inhibition of 

NOX could be reevaluated in NOX1 silenced cells. Since induction of antioxidant enzymes is 

proposed to be a possible mechanism of action for the cytoprotective effect of resveratrol, 

gene/protein expression studies of MnSOD will further strengthen the role of antioxidant 

defense mechanism by resveratrol. 

VI.7  General conclusion 

In this thesis, a murine in vitro model of TNF-α-induced IEC death was established 

using MODE-K cells and the involvement of oxidative stress during cell death signaling by 

TNF-α was identified. The data indicate that MODE-K cells are highly sensitive to TNF-α-

induced apoptosis involving caspase-3/7 activation when co-treated with CHX. Moreover, 

TNF-α/CHX-induced apoptosis of MODE-K cells corresponds with the production of ROS. 

Mitochondria and NOX are the two major sources of ROS overproduction during TNF-α/CHX-

induced cell death in MODE-K cells with O2
 being the predominant ROS entity. From the 

results with mitochondrial complex inhibitors, the quinone-binding sites of mitochondrial 
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ETC complexes I (site IQ) and II (site QP) seem to be the major ROS production sites of 

mitochondria. Resveratrol shows pronounced protection against TNF-α/CHX-induced cell 

death involving the abolishment of mitochondrial ROS/O2
; the moderate cytoprotection 

observed with CORM-A1 is NOX-dependent. This suggests a possible crosstalk of ROS 

signaling from mitochondria to NOX in MODE-K cells. Targeting ROS generation with agents 

like CORM-A1 and resveratrol interfering with particular intracellular ROS production sites 

should be further investigated for the treatment of acute GI inflammatory conditions. 
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Chapter VII   Summary 

 
A single layer of intestinal epithelial cells (IECs) in the gut provides a physical barrier 

between the organism and the luminal content. It allows the passage of nutrients and 

electrolytes but also forms the intestinal epithelial barrier preventing the passage of 

pathogens. The maintenance of its homeostasis is of prime importance for the survival of the 

organism. Apoptosis in the intestinal epithelium is an important regulator of mucosal 

homeostasis. Even though apoptotic cell death of IECs in the crypts and villi is continuously 

present during the physiological state, excessive apoptotic cell death has been implicated  in 

gastrointestinal (GI) disorders. Disturbance of the intestinal epithelial barrier occurs during 

acute GI inflammatory disease conditions such as necrotizing enterocolitis (NEC), and can 

have a triggering role during sepsis. Sepsis is driven by a complex cascade initiated by 

bacteria-derived molecules with subsequent inflammation, oxidative stress and 

mitochondrial dysfunction. The disruption of the intestinal epithelial barrier results in 

invasion of commensal bacteria and the excessive production of inflammatory cytokines by 

mucosal immune cells, eventually leading to pathological inflammation during sepsis. This 

can be accompanied by sepsis-induced ileus, facilitating the passage of luminal content. 

Postoperative ileus (POI), occurring after abdominal surgery, is related to the occurrence of 

an inflammatory process in the muscular layer, induced by surgical handling of the intestine. 

In a mouse model of POI, our laboratory has shown the occurrence of an early ‘oxidative 

burst’ in the mucosa following intestinal manipulation. This might possibly lead to increased 

intestinal permeability, which then can contribute to or trigger the muscular inflammation. 

Tumor necrosis factor-α (TNF-α) is one of the early inflammatory cytokines known to play an 

important role during epithelial barrier dysfunction by induction of IEC apoptosis; it is also 

known to be one of the early inflammatory agents in the pathogenesis of POI. In addition to 

its pro-inflammatory effects, exposure to TNF-α has been shown to be associated with an 

increase in oxidative stress in many cell lines and thus could be expected to cause the same 

effect in IECs. Among the intracellular antioxidant pathways, heme oxygenase-1 (HO-1) is a 

stress-responsive protein known to be upregulated by oxidative stress and inflammatory 

signals; it is known to exert cytoprotection. The beneficial effect of HO-1 is mainly attributed 

to the products of HO-1 activity, namely biliverdin/bilirubin and still more to carbon 
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monoxide (CO). Emerging evidence reveals that CO can exert diverse biological and 

cytoprotective effects. The recent discovery of CO-releasing molecules (CO-RMs) which allow 

controlled CO delivery in biological systems highlights the potential use of this class of 

compounds to deliver CO for therapeutic purposes. In the GI tract, CO/CO-RMs protect 

against the development of POI and decrease inflammation and associated tissue damage 

during sepsis. In addition, CO has been shown to reduce ischemia/reperfusion injury of 

intestinal grafts and development of NEC. Another strategy to obtain the beneficial effects of 

HO-1 is to induce it by pharmacological means. A frequently studied cytoprotective 

compound, that at least in some models acts through induction of HO-1, is the plant 

polyphenol resveratrol. 

The aim of this thesis was to establish an in vitro IEC model to assess TNF-α-induced 

oxidative stress, inflammation and cell death, and to investigate the protective effects of  

CO-RMs and resveratrol versus the TNF-α-induced dysfunction concentrating on their anti-

oxidative effect. 

The murine MODE-K IEC line was established as an in vitro model to assess TNF-α-

induced oxidative stress and apoptotic cell death (chapter III). Similar to many other cell 

types, TNF-α required a combination with the protein synthesis inhibitor cycloheximide 

(CHX) to induce cell death in MODE-K cells. TNF-α (0.1-1 ng)/CHX decreased cell viability, 

increased caspase-3/7 activity, induced apoptosis, decreased the level of reduced 

glutathione (GSH) and increased  production of reactive oxygen species (ROS) in a 

concentration-dependent manner in MODE-K cells. TNF-α/CHX-induced apoptosis occurred 

in parallel with ROS production from 2 h after the start of exposure. CORM-A1 and 

resveratrol were the most effective cytoprotective agents tested among the set of HO-1-

related products and antioxidant compounds, that was investigated; resveratrol abolished 

and CORM-A1 reduced TNF-α/CHX-induced ROS production. Treatment of MODE-K cells with 

TNF-α/CHX caused attenuation of basal HO-1 expression. None of the tested agents induced 

HO-1 in the presence of TNF-α/CHX in MODE-K cells; this suggests that the cytoprotection by 

CORM-A1 and resveratrol involves a HO-1 independent mechanism. 

As TNF-α/CHX-induced ROS production occurred in parallel with cell death, the 

relation between TNF-α/CHX-induced cell death and ROS production was further 

investigated, assessing the sources of ROS production (chapter IV). Using flow cytometry, 

simultaneous determination of the production of total ROS or mitochondrial superoxide 
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anion (O2
) and of cell death was assessed. Exposure to TNF-α/CHX time-dependently 

increased intracellular total ROS and mitochondrial O2
 production in MODE-K cells, starting 

from 2 h, which corresponds with the onset of apoptotic cell death. The significant reduction 

of TNF-α/CHX-induced ROS production and cell death by the antioxidants butylated 

hydroxytoluene, butylated hydroxyanisole, N-acetylcysteine and tiron underlines the 

important role of ROS production in cell death of MODE-K cells. By use of a set of inhibitors, 

it was shown that mitochondria and nicotinamide adenine dinucleotide phosphate oxidases 

(NOX) are the two major sources of ROS overproduction during TNF-α/CHX-induced cell 

death in MODE-K cells, with O2
 being the major type of ROS. Particularly, the quinone-

binding sites of mitochondrial complex I (site IQ) and complex II (site QP) seem to be the 

major sites of mitochondrial ROS production. TNF-α/CHX treatment caused an immediate 

decrease in mitochondrial respiration, and a loss of mitochondrial membrane potential and 

increase in mitochondrial dysfunction from 1 h of exposure on; this was followed by ROS 

production and cell death from 2 h on suggesting a possible sequential link between these 

cellular events. 

Reducing oxidative stress in IECs may be a therapeutic approach to treat acute GI 

disorders. As ROS production corresponds to TNF-α/CHX-induced cell death in MODE-K cells, 

with CORM-A1 and resveratrol decreasing both these effects, the antioxidant mechanisms of 

these cytoprotective agents were investigated (chapter V). While CORM-A1 did not 

influence basal levels of intracellular total or mitochondrial ROS, resveratrol increased total 

cellular ROS but decreased mitochondrial ROS production. Both CORM-A1 and resveratrol 

reduced total ROS production induced by TNF-α/CHX, but only resveratrol abolished the 

TNF-α/CHX-induced increase in mitochondrial ROS level. Resveratrol greatly reduced and 

abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction 

respectively, but CORM-A1 only mildly influenced these parameters. The cytoprotective 

effect of resveratrol versus TNF-α/CHX in MODE-K cells is thus predominantly due to 

mitigation of mitochondrial ROS production, while CORM-A1 acts solely on NOX-derived ROS 

to protect MODE-K cells. As the cytoprotective effect of resveratrol was clearly more 

pronounced than that of CORM-A1, this might correlate with a sequential communication 

from mitochondria to NOX for TNF-α/CHX-induced ROS production in MODE-K cells. 
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Conclusions 

A murine in vitro model of TNF-α/CHX-induced oxidative stress and apoptosis was 

established using MODE-K cells, with ROS production corresponding to cell death. 

Mitochondria and NOX are the two major sources of ROS overproduction during TNF-α/CHX-

induced cell death in MODE-K cells; O2
 was identified to be the predominant ROS. The 

quinone-binding sites of mitochondrial complexes I (site IQ) and II (site Qp) seem to be the 

major ROS production sites in the mitochondria. The pronounced cytoprotective effect of 

resveratrol against TNF-α/CHX-induced cell death involves the abolishment of mitochondrial 

ROS/O2
 while a NOX-dependent mechanism contributes to the moderate cytoprotection by 

CORM-A1. Taken together, these results imply that the antioxidant effects of CORM-A1 and 

resveratrol in IECs could be of potential therapeutic benefit to offer a solution for acute GI 

inflammatory conditions involving oxidative stress of the IEC layer. 

  



 

 
 

 



 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter VIII 
 
SAMENVATTING 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



Chapter VIII 

Samenvatting 
 

257 
 

 

Chapter VIII   Samenvatting 

 
Een enkele laag van intestinale epitheliale cellen (IECs) in de darm vormt een fysieke 

barrière tussen het organisme en de darminhoud. Ze laat de passage van 

voedingsbestanddelen en electrolieten toe maar vormt ook de intestinale epitheliale 

barrière welke de passage van pathogenen voorkomt. Het behoud van de homeostase van 

de intestinale epitheliale cellaag is van primair belang voor de overleving van het organisme. 

Apoptose in het intestinal epitheel is een belangrijke regulator van de mucosale 

homeostase. Weliswaar is celdood van IECs door apoptose in de krypten en villi continu 

aanwezig in fysiologische condities, maar overmatige celdood door apoptose kan betrokken 

zijn in gastro-intestinale (GI) aandoeningen. Verstoring van de intestinale epitheliale barrière 

treedt op tijdens acute GI inflammatoire aandoeningen zoals  necrotizerende enterocolitis 

(NEC); dit kan ook een uitlokkende rol spelen tijdens sepsis. Sepsis wordt gedreven door een 

complexe cascade, in gang gestoken door van bacteriën afkomstige moleculen, met daarop 

volgend inflammatie, oxidatieve stress en mitochondriale dysfunctie. Het doorbreken van de 

intestinale epitheliale barrière leidt tot invasie van commensale bacteriën en overmatige 

productie van inflammatoire cytokinen door immuuncellen in de mucosa, wat uiteindelijk 

leidt tot pathologische inflammatie tijdens sepsis. Sepsis kan ook gepaard gaan met ileus, 

wat de passage van darminhoud doorheen de darmwand bevordert. Postoperatieve ileus 

(POI), die optreedt na abdominale chirurgie, wordt veroorzaakt door een inflammatoir 

proces in de spierlaag, uitgelokt door de manipulatie van de darm tijdens de operatie. In een 

model van POI bij de muis, werd in ons laboratorium voorheen aangetoond dat zich een 

vroege  ‘oxidatieve opstoot’ voordoet in de mucosa na intestinale manipulatie. Dit kan 

mogelijk leiden tot verhoogde intestinale permeabiliteit, wat kan bijdragen aan de 

inflammatie in de spierlaag of deze zelfs kan uitlokken. Tumor necrosis factor-α (TNF-α) is 

één van de inflammatoire cytokinen, die een rol speelt in de dysfunctie van de epitheliale 

barrière door inductie van apoptose van de IECs; het is ook één van de vroege inflammatoire 

agentia in de pathogenese van POI. Naast zijn pro-inflammatoire effecten, is blootstelling 

aan TNF-α geassocieerd met een toename in oxidatieve stress in verschillende cellijnen 

zodat een gelijkaardig effect kan verwacht worden in IECs. Onder de intracellulaire anti-

oxiderende signaalwegen, is heem oxygenase-1 (HO-1) een proteïne dat opgeregeld wordt 
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door oxidatieve stress en inflammatoire signalen; het heeft een cytoprotectief effect. Dit 

gunstig effect van HO-1 wordt hoofdzakelijk toegeschreven aan de producten bekomen door 

de enzymatische activiteit van HO-1, namelijk biliverdine/bilirubine en nog meer 

koolstofmonoxide (CO). Meer en meer evidentie ondersteunt dat CO talrijke biologische en 

cytoprotectieve effecten heeft. De recente ontwikkeling van CO-vrijstellende moleculen (CO-

RMs) met gecontroleerde afgifte van CO in biologische systemen maakt toediening van CO 

voor therapeutische doeleinden mogelijk. In de GI tractus, beschermen CO/CO-RMs tegen de 

ontwikkeling van POI en zij verminderen de inflammatie en de geassocieerde 

weefselbeschadiging tijdens sepsis. Verder gaat CO letsels door ischemie/reperfusie van 

intestinale transplanten en de ontwikkeling van NEC tegen. Een andere strategie om de 

gunstige effecten van HO-1 te bekomen is het te induceren op farmacologische wijze. Een 

cytoprotectieve stof die reeds frequent werd bestudeerd, en althans in sommige modellen 

werkzaam is door inductie van HO-1, is het polyfenol resveratrol, dat aanwezig is in diverse 

planten. 

De bedoeling van dit proefschrift was om een in vitro model van IECs te ontwikkelen 

ten einde de oxidatieve stress en celdood door TNF-α te onderzoeken. Verder werden de 

beschermende effecten van CO-RMs en resveratrol op deze door TNF-α uitgelokte 

dysfuncties onderzocht, hierbij concentrerend op hun anti-oxidatief effect. 

The  MODE-K IEC lijn, afkomstig van de muis, werd ontwikkeld als in vitro model voor 

onderzoek van oxidatieve stress en apoptotische celdood door TNF-α (chapter III). Zoals 

voor vele andere celtypes, was het nodig om TNF-α te combineren met de proteïnesynthese-

inhibitor cycloheximide (CHX) om celdood in MODE-K cellen uit te lokken. TNF-α (0.1-1 

ng)/CHX verminderde de leefbaarheid van de cellen, verhoogde de caspase-3/7 activiteit, 

lokte apoptose uit, verminderde het gehalte aan gereduceerd glutathion (GSH) en 

verhoogde de productie van reactieve zuurstofspecies (ROS) op concentratie-afhankelijke 

manier. De door TNF-α/CHX-uitgelokte apoptose trad op in parallel met de productie van 

ROS vanaf 2 u na de start van de blootstelling. CORM-A1 en resveratrol waren de meest 

effectieve cytoprotectieve agentia onder de bestudeerde set van HO-1-afhankelijke 

producten en anti-oxiderende substanties; CORM-A1 veminderde de door TNF-α/CHX 

uitgelokte productie van ROS terwijl resveratrol ze ophief. Behandeling van MODE-K cellen 

met TNF-α/CHX veroorzaakte een daling van de basale expressie van HO-1. Geen enkele van 

de geteste substanties verhoogde de expressie van HO-1 in aanwezigheid van TNF-α/CHX in 
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de MODE-K cellen; dit suggereert dat de cytoprotectie door CORM-A1 en resveratrol plaats 

grijpt via een mechanisme dat onafhankelijk is van HO-1 . 

Vermits de productie van ROS door TNF-α/CHX in parallel optreedt met de celdood, 

werd het verband tussen de door TNF-α/CHX uitgelokte celdood en productie van ROS 

verder bestudeerd, om de bronnen van de ROS te detecteren (chapter IV). Door gebruik van 

“flow cytometry” werd simultaan de productie van totaal ROS of van mitochondriale 

superoxide anionen (O2
), en van celdood bestudeerd. Blootstelling aan TNF-α/CHX 

verhoogde tijdsafhankelijk de productie van intracellulair totaal ROS en van mitochondriale 

O2
 in MODE-K cellen, startende vanaf 2 u, wat overeenkomt met de start van de 

apoptotische celdood. De significante vermindering van de door TNF-α/CHX uitgelokte 

productie van ROS en celdood door de anti-oxiderende substanties gebutyleerd 

hydroxytolueen, gebutyleerd hydroxyanisol, N-acetylcysteïne en tiron bevestigt de 

belangrijke rol van ROS in de celdood van MODE-K cellen. Door studie van het effect van een 

set inhibitoren, werd aangetoond dat mitochondria en nicotinamide adenine dinucleotide 

fosfaat oxidasen (NOX) de 2 belangrijkste bronnen zijn van ROS tijdens de door TNF-α/CHX 

uitgelokte celdood in MODE-K cellen, met O2
 als belangrijkste ROS-type. De 

bindingsplaatsen van quinone in het mitochondriale complex I (site IQ) en complex II (site QP) 

blijken de majeure mitochondriale productieplaatsen te zijn van mitochondriale ROS. 

Behandeling met TNF-α/CHX veroorzaakte een onmiddellijke daling in de mitochondriale 

respiratie, en vanaf 1 u een daling van de mitochondriale membraanpotentiaal en een 

toename in mitochondriale dysfunctie; dit werd gevolgd door productie van ROS en celdood 

vanaf 2 u wat een sequentieel verband tussen deze cellulaire fenomenen suggereert. 

Vermindering van de oxidatieve stress in IECs zou een therapeutische benadering van  

acute GI aandoeningen kunnen vormen. Vermits de productie van ROS door TNF-α/CHX 

overeenkomt met de uitgelokte celdood in MODE-K cellen, en CORM-A1 en resveratrol beide 

effecten verminderen, werden de anti-oxiderende mechanismen van deze cytoprotectieve 

agentia verder onderzocht (chapter V). Terwijl CORM-A1 de basale spiegels van intracellulair 

totaal ROS en mitochondriaal ROS niet beïnvloedde, verhoogde resveratrol totaal cellulair 

ROS maar verminderde het de basale spiegel van mitochondriaal ROS. Zowel CORM-A1 als 

resveratrol verminderde de productie van totaal ROS door TNF-α/CHX, maar alleen 

resveratrol hief de toename van mitochondriale ROS en O2
 door TNF-α/CHX op. 

Resveratrol verminderde uitgesproken de mitochondriale depolarizatie door TNF-α/CHX en 
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hief de mitochondriale dysfunctie op, terwijl CORM-A1 slechts een mild effect had op beide 

parameters. Het cytoprotectief effect van resveratrol versus TNF-α/CHX in MODE-K cellen 

berust dus hoofdzakelijk op onderdrukking van de mitochondriale productie van ROS, terwijl 

CORM-A1 enkel aangrijpt op NOX om de MODE-K cellen te beschermen. Vermits het 

cytoprotectief effect van resveratrol duidelijk meer uitgesproken was dan dit van CORM-A1, 

kan dit wijzen op een sequentiële communicatie van de mitochondria naar NOX toe tijdens 

de productie van ROS uitgelokt door TNF-α/CHX in MODE-K cellen. 

 

Besluiten 

Een in vitro model om oxidatieve stress en apoptose uitgelokt door TNF-α/CHX in 

IECs te bestuderen werd ontwikkeld door gebruik te maken van MODE-K cellen, afkomstig 

van de muis. De productie van ROS correleerde met het optreden van celdood. Mitochondria 

en NOX zijn de 2 majeure bronnen van overproductie van ROS tijdens door TNF-α/CHX 

uitgelokte celdood in MODE-K cellen; O2
 is het belangrijkste betrokken ROS. De 

bindingsplaatsen voor quinone van mitochondriaal complex I (site IQ) en complex II (site Qp) 

lijken de majeure productieplaatsen van ROS in de mitochondria. Het uitgesproken 

cytoprotectief effect van resveratrol versus TNF-α/CHX berust op de opheffing van de 

productie van mitochondriaal ROS/O2
 terwijl een NOX-afhankelijk mechanisme bijdraagt 

aan de matige cytoprotectie door CORM-A1. De anti-oxiderende effecten van CORM-A1 en 

resveratrol in IECs kunnen mogelijk therapeutisch nuttig zijn voor acute GI inflammatoire 

condities, waarin oxidatieve stress van de IEC-laag betrokken is. 
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